首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Streamwater discharge and chemistry of two small catchments on Catoctin Mountain in north-central Maryland have been monitored since 1982. Repetitive seasonal cycles in stream-water chemistry have been observed each year, along with seasonal cycles in the volume of stream discharge and in groundwater levels. The hypothesis that the observed streamwater chemical cycles are related to seasonal changes in the hydrological flow paths that contribute to streamflow is examined using a combination of data on groundwater levels, shallow and deep groundwater chemistry, streamwater discharge, streamwater chemistry, soil-water chemistry, and estimates of water residence times. The concentrations of constituents derived from rock weathering, particularly bicarbonate and silica, increase in streamwater during the summer when the water table is below the regolith-bedrock interface and stream discharge consists primarily of deep groundwater from the fractured-bedrock aquifer. Conversely, the concentrations in streamwater of atmospherically derived components, particularly sulfate, increase in winter when the water table is above the regolith-bedrock interface and stream discharge consists primarily of shallow groundwater from the regolith. Tritium and chlorofluorocarbon (CFC) measurements suggest that the groundwater in these systems is young, with a residence time of less than several years. The results of this study have implications for the design of large-scale water-quality monitoring programs.  相似文献   

2.
Stream water chemistry is routinely measured over time at fixed and sparse sites, which provides a coarse image of spatial variability. Here, we measured nitrate, dissolved organic carbon (DOC) and several chemical proxies for water flowpaths, catchment residence time and biogeochemical transformations, every 50–100 m along 13 km of streams in six agricultural headwater catchments (1.1–3.5km2). The objective was to examine controls on longitudinal nitrate profiles at a high spatial resolution during four seasons: rewetting of the catchments in autumn, winter high-flow, spring recession and summer low-flow. Our results showed monotonic trends in longitudinal profiles for nitrate and DOC, which were opposite for the two solutes. Spatial trends in water-chemistry profiles persisted across seasons, which suggests time-invariant controls on the spatial variations in concentrations. Four catchments exhibited decreasing nitrate and increasing DOC from upstream to downstream, while two catchments exhibited increasing nitrate and decreasing DOC. These smooth gradients did not reflect a longitudinal land-use gradient, but rather an increase in the proportion of groundwater inflows when moving downstream, as suggested by the chemical proxies and punctual discharge measurements. Water chemistry also changed abruptly at confluences, at a farm point source and at a localized groundwater inflow zone.  相似文献   

3.
Josep Pi  ol  Anna   vila  Ferran Rod 《Journal of Hydrology》1992,140(1-4):119-141
Streamwater chemistry is described for three streams draining undisturbed, evergreen broad-leaved forested catchments on phyllites in NE Spain: two streams with no or negligible flow in summer are located in the Prades massif, and one perennial stream is in the wetter Montseny mountains. Weekly data for a study period of 2–4 years are provided to (1) describe the seasonal variations in streamwater chemistry, (2) analyse the relationship between stream discharge and solute concentrations using a two-component mixing model and (3) search for patterns of temporal variation in stream solute concentrations after discounting the effects of discharge. At Prades, concentrations of all analysed ions, except NO3, showed marked seasonal variations in stream water, whereas at Montseny only ions related to mineral weathering (HCO3, Na+, Ca2+ and Mg2+) showed strong seasonality. Ion concentrations were more closely dependent on instantaneous discharge at Montseny than at Prades. The residuals of the relationship between solute concentrations and discharge retained a strong seasonality at Prades, but not at Montseny. These differences are related to the major hydrochemical processes that determine the streamwater chemistry at each site. The same processes are probably operative in the three catchments, but are of varying relative importance. At Montseny, the mixing of waters of different chemical composition seems to be the major process controlling streamwater chemistry, although the soilwater end-member composition predicted by the mixing model applied did not match the measured soilwater chemistry. In the drier Prades catchments, the two major hydrochemical processes determining the seasonal variation of streamwater chemistry are (1) the restart of flow after the summer drought, which flushes out the solutes accumulated during the dry period, and (2) the seasonal changes in groundwater chemistry that result from the interplay of water residence time, temperature and CO2 partial pressure. In Mediterranean catchments with relatively high precipitation, such as Montseny, the seasonal variation in the streamwater chemistry is largely determined by the same processes as at humid-temperate sites, whereas in drier Mediterranean catchments, such as Prades, the major hydrochemical processes are clearly distinct.  相似文献   

4.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

6.
Y Van Herpe  P. A Troch 《水文研究》2000,14(14):2439-2455
Streamwater nitrate (NO3) concentrations along the main stream and at the outlet of several subcatchments within the 114\3 km2 Zwalm watershed in Flanders, Belgium, have been monitored regularly since 1991. Land use within the Zwalm catchment is predominantly agricultural, with forested regions in the south and urban concentrations in the north‐east of the catchment. Streamwater NO3 concentrations increased with increases in stream discharge rates, but in general, discharge rate explained only about 30% of the variation in NO3 concentrations. The low R2 values were attributed to the observed anticlockwise hysteresis in the NO3 concentration – discharge relationship and to differences in NO3 concentrations between both seasonal flow and various flow regimes, with winter flow explaining 51% of the variation in NO3 concentrations, whereas summer flow explained only 28% of the variation. A hypothesis was formulated in which flow regime accounts for the seasonal variation in NO3 export, postulating that the catchment seasonally alternates between two hydrological stages. The first stage occurs during wet winter periods, when the catchment drains as a single source area, whereas the second stage occurs during dry summer periods, when the groundwater store disconnects into separate subcatchments. This causes NO3 concentration peaks to be more delayed during summer storm events compared with winter storm events. Regarding flow regimes, differences between high and low flow conditions and between increasing and stable/decreasing flow were not as pronounced a differences between seasons. In contrast to the estimation of NO3 concentrations, discharge was a strong predictor (R2= 0\71) of the NO3 flux within the tributaries of the Zwalm catchment. The NO3 concentrations in the main stream increased with decreasing elevation, whereas the seasonal concentration patterns along the main channel were similar to those observed at the outlet. NO3 concentrations varied considerably among catchments and showed a high variability over time, although in general, the variation in NO3 concentration was higher between catchments than within catchments. The impact of land use is clearly reflected in the streamwater NO3 concentrations, although NO3 concentration patterns were also affected by topography and, to a lesser extent, by soil type. A gradual increase in NO3 concentrations at the outlet of the Zwalm catchment could be observed throughout the 1991 – 1998 study period, providing evidence for the general trends of increase in Flanders, which are attributed to the intensification of agricultural activities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We simulated the effects of irrigation on groundwater flow dynamics in the North China Plain by coupling the NIES Integrated Catchment‐based Ecohydrology (NICE) model with DSSAT‐wheat and DSSAT‐maize, two agricultural models. This combined model (NICE‐AGR) was applied to the Hai River catchment and the lower reach of the Yellow River (530 km wide by 840 km long) at a resolution of 5 km. It reproduced excellently the soil moisture, evapotranspiration and crop production of summer maize and winter wheat, correctly estimating crop water use. So, the spatial distribution of crop water use was reasonably estimated at daily steps in the simulation area. In particular, NICE‐AGR reproduced groundwater levels better than the use of statistical water use data. This indicates that NICE‐AGR does not need detailed statistical data on water use, making it very powerful for evaluating and estimating the water dynamics of catchments with little statistical data on seasonal water use. Furthermore, the simulation reproduced the spatial distribution of groundwater level in 1987 and 1988 in the Hebei Plain, showing a major reduction of groundwater level due mainly to overpumping for irrigation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Streamwater samples were collected during 1987–1988 from two adjacent gauged watersheds, the subalpine-alpine East St. Louis and the Fool Creek Alpine, in the Fraser Experimental Forest, Colorado. The study objective was to compare the relationships between streamwater discharge and ion concentration in alpine and alpine-subalpine watersheds at a site receiving low inputs of atmospheric contaminants. Streamwater discharge accounts for much of the variation in ion concentration. Trajectories of time, discharge, and ion concentration suggest that patterns of nutrient flux are controlled primarily by the magnitude of streamwater discharge, and seasonal differences in the relative contributions of snowmelt and soil water. In the subalpine catchment, increased streamwater discharge accounted for most of the decline in concentration of ions, with high concentrations in soil water relative to precipitation. This relationship was not seen in the alpine catchment, probably because of the influence of large diurnal variation in the ratio of snowmelt to soil water. In both catchments, ions with comparatively high concentrations in precipitation and the snowpack relative to soil water showed less concentration decline with increased streamwater discharge. The recurring nature of the trajectories, especially in the subalpine catchment, suggests that the time, discharge, and ion concentration patterns may represent a general characteristic in moderate-sized, undisturbed Rocky Mountain catchments which do not receive high inputs of airborne contaminants.  相似文献   

11.
The hydrology of oxygen‐18 (18O) isotopes was monitored between 1995 and 1998 in the Allt a' Mharcaidh catchment in the Cairngorm Mountains, Scotland. Precipitation (mean δ18O=−7·69‰) exhibited strong seasonal variation in δ18O values over the study period, ranging from −2·47‰ in the summer to −20·93‰ in the winter months. As expected, such variation was substantially damped in stream waters, which had a mean and range of δ18O of −9·56‰ and −8·45 to −10·44‰, respectively. Despite this, oxygen‐18 proved a useful tracer and streamwater δ18O variations could be explained in terms of a two‐component mixing model, involving a seasonally variable δ18O signature in storm runoff, mixing with groundwater characterized by relatively stable δ18O levels. Variations in soil water δ18O implied the routing of depleted spring snowmelt and enriched summer rainfall into streamwaters, probably by near‐surface hydrological pathways in peaty soils. The relatively stable isotope composition of baseflows is consistent with effective mixing processes in shallow aquifers at the catchment scale. Examination of the seasonal variation in δ18O levels in various catchment waters provided a first approximation of mean residence times in the major hydrological stores. Preliminary estimates are 0·2–0·8 years for near‐surface soil water that contributes to storm runoff and 2 and >5 years for shallow and deeper groundwater, respectively. These 18O data sets provide further evidence that the influence of groundwater on the hydrology and hydrochemistry of upland catchments has been underestimated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   

16.
This study investigates 72 catchments across the federal state of Baden‐Wuerttemberg, Germany, for changes in water quality during low‐flow events. Data from the state's water quality monitoring network provided seven water quality parameters (water temperature, electrical conductivity, concentrations of chloride, sodium, sulfate, nitrate, and phosphate), which were statistically related to streamflow variability. Water temperature changes during low‐flow showed seasonal dependence. Nitrate concentrations revealed high spatial heterogeneity with about one third of the stations showing decreasing values during low discharge. For most other parameters, concentrations increased during low‐flow. Despite consistent trend directions, the magnitudes of changes with streamflow differed markedly across the state. Both multiple linear regression and a multiple analysis of variances were applied to explain these differences with the help of catchment characteristics. Results indicated that for sulfate and conductivity, geology of the catchments was the most important control, whereas for chloride, sodium, and nitrate, sewage treatment plants had the largest influence. For phosphate, no clear control could be identified. Independent from the applied method, land use was a less important control on river water quality during low‐flow than geology or inflow from sewage treatment plants. These results show that the effects of diffuse and point sources, as well as those of natural and anthropogenic sources differ for different water quality parameters. Overall, a high diversity of potential water quality deterioration signals needs to be considered when the ecological status of rivers is to be protected during low‐flow events.  相似文献   

17.
《Journal of Hydrology》1999,214(1-4):74-90
Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a “memory effect”. This memory effect expressed itself as an increase in the winter–summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter–summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process – predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.  相似文献   

18.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Tim P. Burt  Fred Worrall 《水文研究》2009,23(14):2056-2068
This study considers a 35‐year record of streamwater nitrate concentration in a small agricultural catchment in south west England (Slapton Wood). The study revisits earlier work to assess whether upward trends have been maintained and how the controls upon streamwater concentration have been altered. The study has shown that (1) the catchment has reached a new position of equilibrium and increases in nitrate concentration have lessened; (2) the occurrence of severe drought in the record means that records of less than a decade are misleading and only long‐term records can illustrate changes of state; (3) the change of state observed in the catchment is illustrated in the switching of long‐term memory effects from a negative to a positive annual memory and (4) several significant long‐term impulsivity relationships with rainfall that become insignificant over the course of the study period. The study shows the importance of long‐term records in understanding changes in state in catchments and understanding the time constants of a range of driving processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号