首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A nanocomposite of manganese dioxide coated manganese hexacyanoferrate was synthesized by a facile co-precipitation method and tested as active electrode material for an electrochemical supercapacitor. A way called "Deep electro-oxidation" was used to generate manganese dioxide coated layer for stabilizing the electrode material. The structure and ingredient of the resulting MnHCF/MnO2 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray Photoelectron Spectroscopy. Electrochemical testing showed a capacitance of 225.6 F/g at a sweep rate of 5 mV/s within a voltage range of 1.3 V, and high energy density of 37.2 Wh/kg at a current density of 0.5 A/g in galvanostatic charge/discharge cycling. It is suggested that the two different components, manganese hexacyanoferrate core and manganese dioxide shell, lead to an integrated electrochemical behavior, and an enhanced capacitor. The electrochemical testing and corresponding XPS analysis also demonstrated that the manganese coordinated by cyanide groups via nitrogen atoms in MnHCF did not get involved in the charge storage process during potential cycles.  相似文献   

2.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

3.
运用Tafel极化曲线和线性电势扫描法研究了常温弱酸性CuCl2-NaCl溶液中铜氯络合物体系的电化学放电机理。通过测量不同浓度配比的CuCl2-NaCl溶液的极化曲线得到各自的交换电流密度,然后根据电化学反应级数法计算直接在电极上放电的Cu(Ⅱ)-Cl络合物的配位数。并且运用线性电势扫描法进一步研究了此络合物在铂电极上的还原反应,在体系可逆的情况下计算得到其发生放电反应的离子浓度。结果表明:溶液中存在的主要络离子是[CuCl]+,在铂电极上发生电化学反应的铜络离子是[CuCl]+。铜氯络离子在铂电极上的还原反应分两步进行,其中第一步为可逆的单电子还原过程,体系中[CuCl]+和Cu的电化学反应级数均为一级;4.000 mol/L NaCl-0.100 mol/L CuCl2溶液体系中发生放电反应的[CuCl]+的浓度为0.086 mol/L。研究结果为目前学术界存在广泛分歧的Cu2+在高浓度氯离子溶液中的放电机理提供了重要的实验依据,同时对未来湿法冶金、地质和地球化学等领域中溶解态金属络合物的电化学分析具有一定的借鉴作用。  相似文献   

4.
N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定   总被引:1,自引:1,他引:0  
利用混合气体的标准样品对激光拉曼探针进行标定,可以快速准确地对包裹体中的无机及有机气相组分进行定量分析。而常用的商用钢瓶装混合气体标样,存在费用高、气体组成单一固定等缺点。本文设计了一套在线标样制备装置,提出一种在线配置不同浓度和压力条件下混合气体标样的方法。利用高纯度(纯度99.999%)的N2、CH4以及CO2钢瓶气,经过在线混合增压,在5 MPa和10 MPa条件下制备了N2摩尔分数为30%、50%和70%的N2-CH4以及N2-CO2混合气体在线标样。该方法制备的标样与70%N2+30%CO2的商用钢瓶气标样对比表明,CO2与N2的拉曼相对峰高以及相对峰面积值的误差在4%以内,具有较高的准确度和重现性。通过不同压力和浓度条件下CH4以及CO2的拉曼相对定量因子测定表明,气体的相对定量因子在5~10 MPa压力条件下与压力及组成无关。地质样品应用结果表明,本方法可以方便、灵活、准确地按任意比例将两瓶及两瓶以上纯气体钢瓶样品进行混合及增压,为激光拉曼标定、气体组成原位测量等提供了一种新的技术思路。  相似文献   

5.
低硅埃达克岩(low-SiO2adakites,LSA,SiO2<60%)和高硅埃达克岩(high-SiO2adakites,HSA,SiO2>60%)的术语是Martin等(2005)提出来的。本文不赞同上述分类,因为,他们的低硅埃达克岩是赞岐岩而不是埃达克岩。赞岐岩是幔源的,埃达克岩是壳源的,虽然埃达克岩可以与地幔混合形成高镁的埃达克岩,但仍然是壳源的。不应当把壳源的岩浆和幔源的岩浆混淆起来。  相似文献   

6.
1Introduction Researchontheapplicationofnaturalminerals(zeolite,montmorillonite,etc.)inenvironmentalpro tectionisattractinggreatattentionofmoreandmorere searchers(WuPingxiaoetal.,2001;Suhasetal.,2000).Asthenaturalmineralshavelargenumbersof micro poresandbigsurfaceareas,thezeolite/TiO2compositephotocatalystcanbepreparedbycombining TiO2withzeolite.Nucleus formationfreeenergyof TiO2crystaldecreasesinamulti phasesystemofzeo lite,whichhelpsformnanometerTiO2crystalanden richstructuralhydroxyl;op…  相似文献   

7.
Zeolite/TiO2 composite photocatalysts were prepared by adding a certain amount of mordenite in TiO2, and degradation experiments on toluene through photocatalytic reactions were implemented. In this paper, these photocatalysts were characterized by using SEM, IR, RAMAN, XRD and UV-Vis to shed light on the microstructure and photocatalytic performance of the composite photocatalysts. The results indicated that the structural hydroxy of zeolite can participate in bonding reaction with TiO2, the addition of zeolite can greatly reduce the diameter of nanometer TiO2 particles in the composite photocatalysts, and enhance the ultraviolet light absorptance of the composite photocatalysts. When the percentage content of zeolite reached 20%, the photocatalytic performance of this catalyst would be highest, with the toluene conversion rate up to 94.58%.  相似文献   

8.
为进一步提高Ag-TiO2光催化效能,制备了还原氧化石墨烯(rGO)复合Ag-TiO2基的光电极。先通过对比不同的复合方式探究rGO对Ag-TiO2光催化剂表面电子传输和四环素降解效能的影响;再通过电化学阻抗谱测量、莫特-肖特基曲线等电化学手段对电极进行表征。结果表明:分层复合方式主要降低载体表面控制电极双层/薄膜的界面电阻,而全混复合方式主要降低总电荷转移电阻;分层电极的电子供体浓度随rGO质量分数增加而增大;在rGO质量分数为0.45%和0.25%时,分层复合和全混复合材料对四环素的降解速率分别比Ag-TiO2提高11.4%和2.3%;在外加0.5 V偏压下,分层复合电极LG6降解效率比未加外偏压时提高了5.3%,而全混复合电极MG2效率没有提升。分层复合方式能更有效地提高光催化剂表面电子传输效能。  相似文献   

9.
Eleven Chinese immature source rock concentrates from the immature oil formations in four different depressions were extracted ultrasonically with a mixture of CS2 and N-methyl-2-pyrrolidinone (CS2/NMP) at room temperature. The samples were also extracted with CHCl3 and a mixture of methanol/acetone/chloroform (MAC) for comparison. The solvent system CS2/NMP is very efficient for the extraction of immature source rock concentrates, giving much higher extraction yields than CHCl3 or MAC. The composition of the extracts using different solvent mixtures is also different. Model compound tests indicate that no chemical reactions have taken place between the NMP and the substrates in the extraction. These results suggest that there are abundant non-covalent bond interactions in the organic matter of the immature source rock concentrates. The fact that CS2/NMP mixed solvent extracts more than MAC and CHCl3 is not only because it can dissolve higher molecular weight fractions, but also because it has stronger ability to disrupt the complex interactions existing between the soluble and insoluble fractions. Biomarker distributions in the saturated hydrocarbon fractions are different for different solvent systems, suggesting that care should be taken when comparing the biomarker parameters in source rocks when using different solvents for extraction.  相似文献   

10.
The kinetics of crystallization of strontium carbonate (strontianite) from strontium bicarbonate solutions were examined. CO2 was stripped from a slightly acidic solution of Sr(HCO3)2 by stirring resulting in critical supersaturation and precipitation of strontianite. The reduction of the Sr2+ concentration was recorded as a function of time by measuring the electrolytic conductivity and the pH value.

Homogeneous primary nucleation is dominant at high supersaturations, whereas heterogeneous primary nucleation prevails at low supersaturations. The crystal growth rate increases with increasing supersaturation. This effect is less pronounced at higher supersaturations. The growth rate is mostly transport-controlled at high supersaturation. At lower supersaturation the crystal growth is mainly determined by integration of ions into the crystal lattice. These results may be used to explain the deposition of strontianite in natural systems.  相似文献   


11.
Cyclic voltammetry has been done for Ni2+, Co2+, and Zn2+ in melts of diopside composition in the temperature range 1425 to 1575°C. Voltammetric curves for all three ions excellently match theoretical curves for uncomplicated, reversible charge transfer at the Pt electrode. This implies that the neutral metal atoms remain dissolved in the melt. The reference electrode is a form of oxygen electrode. Relative to that reference assigned a reduction potential of 0.00 volt, the values of standard reduction potential for the ions are E1 (Ni2+Ni0, diopside, 1500°C) = ?0.32 ± .01 V, E1 (Co2+Co0, diopside, 1500°C) = ?0.45 ± .02 V, and E1 (Zn2+Zn0, diopside, 1500°C) = ?0.53 ± .01 V. The electrode reactions are rapid, with first order rate constants of the order of 10?2 cm/sec. Diffusion coefficients were found to be 2.6 × 10?6 cm2/sec for Ni2+, 3.4 × 10?6 cm2/sec for Co2+, and 3.8 × 10?6 cm2/sec for Zn2+ at 1500°C. The value of E1 (Ni2+Ni0, diopside) is a linear function of temperature over the range studied, with values of ?0.35 V at 1425°C and ?0.29 V at 1575°C. At constant temperature the value of E1 (Ni2+Ni0, 1525°C) was not observed to vary with composition over the range CaO · MgO · 2SiO2 to CaO·MgO·3SiO2 or from 1.67 CaO·0.33MgO·2SiO2 to 0.5 CaO·1.5MgO·2SiO2. The value for the diffusion coefficient for Ni2+ decreased by an order of magnitude at 1525°C over the compositional range CaO · MgO · 1.25SiO2 to CaO · MgO · 3SiO2. This is consistent with a mechanism by which Ni2+ ions diffuse by moving from one octahedral coordination site to another in the melt, with the same Ni2+ species discharging at the cathode regardless of the SiO2 concentration in the melt.  相似文献   

12.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

13.
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.  相似文献   

14.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   

15.
地表水体富营养化现象与磷的积累有密切关系,去除水体中溶解态磷是降低富营养化风险的技术关键。近十余年来,稀土元素被用于污水除磷剂的开发,并获得了良好的应用成效。本文实验比较了8种结晶态稀土氧化物(Y_2O_3、La_2O_3、CeO_2、Pr6O11、Nd_2O_3、Sm_2O_3、Eu_2O_3和Dy_2O_3)的除磷性能,结果表明La_2O_3的除磷性能最好,Pr6O11、Y_2O_3、Eu_2O_3、Nd_2O_3次之,Sm_2O_3和Dy_2O_3效果微弱,CeO_2完全没有除磷能力;研究表明稀土氧化物表面磷吸附的动力学行为更符合准一级反应模型,吸附等温线符合Langmuir模型。实验表征了除磷后的稀土氧化物和除磷过程中溶液p H值的变化,认为稀土氧化物除磷是一个表面吸附占主导,氧化物溶解出来的离子辅助沉淀的吸附过程。为了避免稀土氧化物颗粒在水体中发生团聚并降低表面吸附能力,将稀土氧化物La_2O_3微纳米颗粒负载在不同黏土矿物上,发现负载于黏土矿物表面的稀土氧化物除磷能力有较好提升,磷吸附量均提高25%左右。负载等量La_2O_3的3种黏土矿物的除磷性能差异不显著,黏土矿物提高稀土氧化物颗粒分散度可能是后者除磷能力提升的主要原因。  相似文献   

16.
Partial substitution of coal by biomass in combustion systems in conjunction with advanced technologies for CO2 capture and storage may result in a significant reduction of greenhouse gases emissions. This study investigates three biomass chars produced from rice husk, forest residuals and wood chips under N2 and CO2 atmospheres using a drop tube furnace (DTF) heated at 950 °C. The char constitutes an unburned residue which has been devolatilized under conditions resembling in thermal history those in full scale boilers. Higher weight losses were achieved under N2 than under CO2 for each type of biomass, and the highest weight loss was that of wood chips biomass, followed by forest residuals and then rice husk. The results indicate significant morphological differences between the biomass chars produced. The wood chips yielded thick-walled chars with a cenospheric shape very similar to those of low-rank vitrinite. The forest residual chars were angular in shape and often had a tenuinetwork structure, while the rice husk chars retained their vegetal structure. Overall, the studied biomass chars can be described as microporous solids. However, in the case of the rice husk, the silica associated to the char walls was essentially mesoporous, increasing the adsorption capacity of the rice husk chars. The atmosphere in the DTF affects the development of porosity in the chars. The pore volumes of the rice husk and forest residual chars prepared under a CO2 atmosphere were higher than those of chars prepared under a N2 atmosphere, whereas the opposite was the case with the wood chip chars. The chars that experienced the most drastic devolatilization were those with the lowest intrinsic reactivity. This indicates a more efficient reorganization of the chemical structure that reduces the number of active sites available for oxygen attack. Overall a similar morphology, optical texture, specific surface area and reactivity were found for the biomass chars generated under N2 and CO2, which is a similar result to that obtained for coal chars.  相似文献   

17.
The cumulative association constant (β2) for the geochemically important aqueous complex UO2[HPO4]2?2 has been determined by potentiometric titration in Na2HPO4-UO2(NO3)2 solutions in the pH range 3.9–4.7, at ionic strengths below 0.024 molal with the Newton-Raphson method used to compute β2 from the chemical analytical data. Based on 25 measurements we obtain logβ2 = 18.3 ± 0.2 at 25°C. From the same experiments we compute that the association constant of UO2OH+ is 8.9 ± 0.1, in disagreement with the value of 8.3 ± 0.3 for this constant given by Baes and Mesmer (1976).  相似文献   

18.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   

19.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

20.
煤层CO2地质封存可实现CO2减排和增产煤层气双重目标,是一种极具发展前景的碳封存技术。相对于其他封存地质体而言,煤的微孔极其发育,煤层CO2封存机制与煤中气、水微观作用关系密切,其内在影响机理尚不清楚。以2个烟煤样品的系统煤岩学分析测试为基础,构建了煤的大分子结构及板状孔隙空间模型,进一步采用分子动力学方法模拟了不同温、压条件下、不同煤基质类型表面的CO2和水的润湿行为,揭示煤层CO2注入后引起的水润湿性变化规律,初步阐明煤层CO2封存的可注性、封存潜力、封存有效性等影响因素及微观作用机理。结果表明:(1)影响煤润湿性的主要因素是煤中极性含氧官能团,其含量越高煤的润湿性越强;(2)煤中注入CO2后,CO2通过溶解作用穿透水分子层与水分子发生竞争吸附,从而减小水在煤表面润湿性;(3)随注入压力增大和温度降低,煤表面CO2吸附量增多,对氢键破坏作用增强,润湿性减弱越明显;(4)亲水性煤层CO<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号