首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present a new regional model for the depth-averaged density structure of the cratonic lithospheric mantle in southern Africa constrained on a 30′ × 30′ grid and discuss it in relation to regional seismic models for the crust and upper mantle, geochemical data on kimberlite-hosted mantle xenoliths, and data on kimberlite ages and distribution. Our calculations of mantle density are based on free-board constraints, account for mantle contribution to surface topography of ca. 0.5–1.0 km, and have uncertainty ranging from ca. 0.01 g/cm3 for the Archean terrains to ca. 0.03 g/cm3 for the adjacent fold belts. We demonstrate that in southern Africa, the lithospheric mantle has a general trend in mantle density increase from Archean to younger lithospheric terranes. Density of the Kaapvaal mantle is typically cratonic, with a subtle difference between the eastern, more depleted, (3.31–3.33 g/cm3) and the western (3.32–3.34 g/cm3) blocks. The Witwatersrand basin and the Bushveld Intrusion Complex appear as distinct blocks with an increased mantle density (3.34–3.35 g/cm3) with values typical of Proterozoic rather than Archean mantle. We attribute a significantly increased mantle density in these tectonic units and beneath the Archean Limpopo belt (3.34–3.37 g/cm3) to melt-metasomatism with an addition of a basaltic component. The Proterozoic Kheis, Okwa, and Namaqua–Natal belts and the Western Cape Fold Belt with the late Proterozoic basement have an overall fertile mantle (ca. 3.37 g/cm3) with local (100–300 km across) low-density (down to 3.34 g/cm3) and high-density (up to 3.41 g/cm3) anomalies. High (3.40–3.42 g/cm3) mantle densities beneath the Eastern Cape Fold belt require the presence of a significant amount of eclogite in the mantle, such as associated with subducted oceanic slabs.We find a strong correlation between the calculated density of the lithospheric mantle, the crustal structure, the spatial pattern of kimberlites, and their emplacement ages. (1) Blocks with the lowest values of mantle density (ca. 3.30 g/cm3) are not sampled by kimberlites and may represent the “pristine” Archean mantle. (2) Young (< 90 Ma) Group I kimberlites sample mantle with higher density (3.35 ± 0.03 g/cm3) than the older Group II kimberlites (3.33 ± 0.01 g/cm3), but the results may be biased by incomplete information on kimberlite ages. (3) Diamondiferous kimberlites are characteristic of regions with a low-density cratonic mantle (3.32–3.35 g/cm3), while non-diamondiferous kimberlites sample mantle with a broad range of density values. (4) Kimberlite-rich regions have a strong seismic velocity contrast at the Moho, thin crust (35–40 km) and low-density (3.32–3.33 g/cm3) mantle, while kimberlite-poor regions have a transitional Moho, thick crust (40–50 km), and denser mantle (3.34–3.36 g/cm3). We explain this pattern by a lithosphere-scale (presumably, pre-kimberlite) magmatic event in kimberlite-poor regions, which affected the Moho sharpness and the crustal thickness through magmatic underplating and modified the composition and rheology of the lithospheric mantle to make it unfavorable for consequent kimberlite eruptions. (5) Density anomalies in the lithospheric mantle show inverse correlation with seismic Vp, Vs velocities at 100–150 km depth. However, this correlation is weaker than reported in experimental studies and indicates that density-velocity relationship in the cratonic mantle is strongly non-unique.  相似文献   

2.
Mafic granulite and spinel lherzolite xenoliths from Cenozoic alkaline basalts near Al-Ashkhara, eastern Oman, have been selected for a systematic mineralogical, geochemical and Sr–Nd–Pb isotopic study. This is the only place in E Arabia where samples of both lower crust and upper mantle can be examined. Lower crustal xenoliths consist of two mineralogically and chemically distinct groups: gabbronorite (subequal abundances of ortho- and clino-pyroxene and plagioclase) and plagioclase pyroxenite (dominant pyroxene and subordinate plagioclase). Temperature estimates for lower crustal xenoliths using the two pyroxene geothermometer (T-Wells) yield 810–865 °C. The mineral assemblage (spinel–pyroxene–plagioclase) and Al content in pyroxene indicate that plagioclase-bearing xenoliths equilibrated at 5–8 kbar (13 and 30 km depth) in the lower crust. εNd and 87Sr/86Sr calculated at 700 Ma for Al-Ashkhara lower crustal xenoliths (+ 6.4 to + 6.6; 87Sr/86Sr = 0.7028 to 0.7039) are consistent with the interpretation that juvenile, mafic melts were added to the lower crust during Neoproterozoic time and that there was no discernible contribution from pre-Neoproterozoic crust. Upper mantle xenoliths consist of both dry and hydrous (phlogopite-bearing) lherzolites. These peridotites are more Fe-rich than expected for primitive mantle or melt residues and probably formed by pervasive circulation of melts that have refertilized pre-existing mantle peridotites. Mineral equilibration temperatures range from 990 to 1070 °C. Isotopic compositions calculated at 700 Ma are εNd = + 6.8 to + 7.8 and 87Sr/86Sr = 0.7016 to 0.7025, indicating depleted upper mantle. Pb isotopic compositions indicate that the metasomatism was relatively recent, perhaps related to Paleogene tectonics and basanite igneous activity. Nd model ages for the spinel peridotite xenoliths range between 0.59 and 0.65 Ga. The xenolith data suggest that eastern Arabian lower crust is of hotspot origin, in contrast to western Arabian lower crust, which mostly formed at a convergent plate margin. Geochemical and isotopic differences between lower crust and upper mantle indicate that these are unrelated, possibly because delamination replaced the E Arabian mantle root in Neoproterozoic time.  相似文献   

3.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

4.
We report the finding of peridotite xenoliths in the Early Cretaceous Longmengou olivine-bearing diabase (138 Ma) in the Northern Taihang Mountains in the central North China Craton. Based on the modal proportions of olivine, clinopyroxene, amphibole and anorthite, these peridotite xenoliths can be divided into three zones: clinopyroxene-bearing olivine zone (COZ), olivine-clinopyroxene zone (OCZ), and amphibole-bearing anorthite-clinopyroxene zone (AACZ). The core of olivine grains in clinopyroxene-bearing olivine zone have higher Mg# (> 95), SiO2 (41.80–42.53 wt%) and lower CaO (< 0.07 wt%), FeO (3.91–4.54 wt%) than the rim (Mg# = 92.5–93.4, SiO2 = 41.27–41.98 wt%, CaO = 0.20–0.34 wt%, and FeO = 7.02–8.87 wt%), suggesting that rim is reaction product. The core of olivine grains with higher Mg# (> 95) and lower NiO content (< 0.04 wt%) in the clinopyroxene-bearing olivine zone was derived from ultra-depleted mantle subsequently altered by high Mg# melts/magma with low Ni. Two generations of olivine grains occur in the OCZ where the first generation shows exsolution of ilmenite and magnetite rods containing up to 0.35 wt% TiO2, and was likely derived from garnet peridotite hydrated by water. The second generation shows high Mg# (96.2–97.1) and cataclastic texture, and was possibly formed by decomposition of the COZ. The occurrence of aluminous spinel suggests the role of melts with extremely high Al and Mg. Clinopyroxene in the AACZ shows systematic core-rim compositional variation with CaO and SiO2 contents increasing towards the rim, and MgO and Fe2O3 concentrations decreasing from the core to the rim, indicating that the amphibole-bearing anorthite-clinopyroxene zone is a product of the reaction between mantle xenoliths and mafic magma. Plagioclase with high An value (92.0–99.95, average 97.79) indicates that the metasomatic melts have high Ca/Na and Al/Si ratios, possibly produced by the partial melting of ultra-depleted mantle under “wet” conditions. Combined with the data on other mantle xenoliths discovered in the NCC, our results suggest that the Mesozoic lithospheric mantle beneath the North Taihang Mountains within the central NCC is composed of ultra-depleted Archean and Paleoproterozoic peridotites and dunites modified by complex melts. We also propose that the destruction of eastern part of the NCC mainly occurred during Early Cretaceous, and that the boundary of the lithospheric destruction coincides with the Taihang Mountains.  相似文献   

5.
Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.  相似文献   

6.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

7.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

8.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

9.
The Anyi intrusion is located in the central zone of Emeishan large igneous province (ELIP), SW China. It outcrops in an area of about 0.65 km2 and ~ 1 km thick and dips to the southwest. The Anyi intrusion consists of a lower clinopyroxenite zone, middle gabbro zone, and an upper monzonite–syenite zone. Up to 400 m thick stratiform disseminated Fe–Ti oxide layer with grades of 16–18 wt.% total Fe is hosted in the lower clinopyroxenite zone. Zircon SHRIMP U–Pb age (247 ± 3 Ma) indicates that the Anyi intrusion represents postdated mafic magmatism resulting from the ~ 260 Ma Emeishan mantle plume. Compared with the typical oxide-bearing intrusions (such as Panzhihua and Baima) formed at ~ 260 Ma in the ELIP, the Anyi intrusion is characterized by high alkaline contents and LREE/HREE ratios, extremely low εNd values (− 6.2 to − 7.6) and moderate high (87Sr/86Sr)i values (0.7072 to 0.7086). These characteristics of the Anyi intrusion cannot be explained by fractional crystallization or crustal contamination, but may reflect a unique enriched continental lithospheric mantle source (a mantle source mixed between garnet pyroxenite and spinel peridotite). We propose that the postdated mafic magmatism associated with the formation of the Anyi intrusion and its Fe–Ti oxide ore may be the product of melting of a mantle source mixed between garnet pyroxenite and spinel peridotite in the shallow lithosphere caused by conductive heating combined with lithosphere thinning due to plume–lithosphere interaction.  相似文献   

10.
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different PT ranges for eclogites and garnet pyroxenites with average PT conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated PT ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust.  相似文献   

11.
Geochronological, geochemical and whole-rock Sr–Nd isotopic analyses have been completed on a suite of alkaline ultramafic dykes from southwest (SW) Guizhou Province, China with the aim of characterising their petrogenesis. The Baiceng ultramafic dykes have a LA-ICP-MS zircon 206Pb/238U age of 88.1 ± 1.1 Ma (n = 8), whereas two phlogopites studied by 40Ar/39Ar dating methods give emplacement ages of 85.25 ± 0.57 Ma and 87.51 ± 0.45 Ma for ultramafic dykes from Yinhe and Lurong, respectively. In terms of composition, these Late Mesozoic ultramafic dykes belong to the alkaline magma series due to their high K2O (3.31–5.04 wt.%) contents. The dykes are characterised by enrichment of light rare earth element (LREE) and large-ion lithosphile elements (LILEs) (Rb and Ba), negative anomalies in high field strength elements (HFSEs), such as, Nb, Ta and Ti relative to primitive mantle, low initial 87Sr/86Sr ratios (0.7060–0.7063) and positive εNd(t) values (0.3–0.4). Such features suggest derivation from low degree (< 1%) partial melting of depleted asthenospheric mantle (garnet-lherzolite), and contamination to various degrees (~ 10%) by interaction with upper crustal materials.  相似文献   

12.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

13.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

14.
《Gondwana Research》2016,29(4):1344-1360
Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean–Proterozoic Siberian Craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2 the base of the CBL is at a 180 km depth. The uncertainty of density model is < 0.02 t/m3 or < 0.6% with respect to primitive mantle. The results, calculated at in situ and at room temperature (SPT) conditions, indicate a heterogeneous density structure of the Siberian lithospheric mantle with a strong correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. ‘Pristine’ cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8–3.0% (and SPT density of 3.29–3.33 t/m3 as compared to 3.39 t/m3 of primitive mantle). Cratonic mantle affected by magmatism (including the kimberlite provinces) has a typical density deficit of 1.0–1.5%, indicative of a metasomatic melt-enrichment. Intracratonic sedimentary basins have a high density mantle (3.38–3.40 t/m3 at SPT) which suggests, at least partial, eclogitization. Moderate density anomalies beneath the Tunguska Basin imply that the source of the Siberian LIP lies outside of the Craton. In situ mantle density is used to test the isopycnic condition of the Siberian Craton. Both CBL thickness models indicate significant lateral variations in the isopycnic state, correlated with mantle depletion and best achieved for the Anabar Shield region and other intracratonic domains with a strongly depleted mantle. A comparison of synthetic Mg# for the bulk lithospheric mantle calculated from density with Mg# from petrological studies of peridotite xenoliths from the Siberian kimberlites suggests that melt migration may produce local patches of metasomatic material in the overall depleted mantle.  相似文献   

15.
LA–ICP–MS zircon U–Pb ages, geochemical and Sr–Nd–Pb isotope data are presented for mafic–ultramafic complexes from the southern Liaoning–southern Jilin area with the aim of determining the nature of the Mesozoic lithospheric mantle and to further constrain the spatial extent of destruction of the North China Craton (NCC). The complexes consist of olivine-websterite, gabbro, dolerite, and gabbro-diorite. Zircons from the complexes show typical zoning absorption, are euhedral–subhedral in shape, and yield high Th/U ratios (1.23–2.87), indicating a magmatic origin. Zircon U–Pb age data indicate that they formed in the Early Cretaceous (129–137 Ma). Geochemically, they have SiO2 = 44.3–49.8%, MgO = 6.8–26.5%, Cr = 102–3578 ppm, and Ni = 31–1308 ppm, and are characterized by enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), as well as a wide range of Sr–Nd–Pb isotopic compositions [(87Sr/86Sr)i = 0.70557–0.71119; εNd (t) = ?5.4 to ?20.1; (206Pb/204Pb)i = 15.13–17.85; Δ7/4 = ?11.49 to 16.00; Δ8/4 = 102.64–203.48]. Compared with the southern Liaoning mafic–ultramafic rocks, the southern Jilin mafic–ultramafic rocks have high TiO2 and Al2O3 contents, high εNd (t) values, low (La/Yb)N values, low initial 87Sr/86Sr ratios, and low radiogenic Pb isotopic compositions. These findings indicate that the primary magmas of the southern Jilin complexes were derived from lithospheric mantle that was previously metasomatized by a melt derived from the delaminated ancient lower crust, whereas the primary magmas of the southern Liaoning complexes originated from partial melting of a lithospheric mantle source that was previously modified by melt derived from the broken-off Yangtze slab. Therefore, the lateral extent of the NCC destruction should include the southern Liaoning–southern Jilin area.  相似文献   

16.
Geochemical compositions of lower crustal and lithospheric mantle xenoliths found in alkali basaltic lavas from the Harrat Ash Shamah volcanic field in southern Syria place constraints on the formation of the Arabian–Nubian Shield in northern Arabia. Compositions of lower crustal granulites are compatible with a cumulate formation from mafic melts and indicate that they are not genetically related to their host rocks. Instead, their depletion in Nb relative to other incompatible elements points to an origin in a Neoproterozoic subduction zone as recorded by an average depleted mantle Sm–Nd model age of 630 Ma.Lithospheric spinel peridotites typically represent relatively low degree (< 10%) partial melting residues of spinel lherzolite with primitive mantle compositions as indicated by major and trace element modelling of clinopyroxene and spinel. The primary compositions of the xenoliths were subsequently altered by metasomatic reactions with low degree silicate melts and possibly carbonatites. Because host lavas lack these signatures any recent reaction of the lherzolites with their host magma can be ruled out. Sm–Nd data of clinopyroxene from Arabian lithospheric mantle lherzolites yield an average age of 640 Ma suggesting that the lithosphere was not replaced since its formation and supporting a common origin of the Arabian lower crustal and lithospheric mantle sections.The new data along with published Arabian mantle xenolith compositions are consistent with a model in which the lithospheric precursor was depleted oceanic lithosphere that was overprinted by metasomatic processes related to subduction and arc accretion during the generation of the Arabian–Nubian Shield. The less refractory nature of the northern Arabian lithosphere as indicated by higher Al, Na and lower Si and Mg contents of clinopyroxenes compared to the more depleted nature of the south Arabian lithospheric mantle, and the comparable low extent of melt extraction suggest that the northern Arabian lithosphere formed in a continental arc system, whereas the lithosphere in the southern part of Arabia appears to be of oceanic arc origin.  相似文献   

17.
The northeastward subduction of the Neo-Tethyan oceanic lithosphere beneath the Iranian block produced vast volcanic and plutonic rocks that now outcrop in central (Urumieh–Dokhtar magmatic assemblage) and north–northeastern Iran (Alborz Magmatic Belt), with peak magmatism occurring during the Eocene. The Karaj Dam basement sill (KDBS), situated in the Alborz Magmatic Belt, comprises gabbro, monzogabbro, monzodiorite, and monzonite with a shoshonitic affinity. These plutonic rocks are intruded into the Karaj Formation, which comprise pyroclastic rocks dating to the lower–upper Eocene. The geochemical and isotopic signatures of the KDBS rocks indicate that they are cogenetic and evolved through fractional crystallization. They are characterized by an enrichment in LREEs relative to HREEs, with negative Nb–Ta anomalies. Geochemical modeling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of partial melting of a phlogopite–spinel peridotite source to generate the KDBS rocks. Their low ISr = 0.70453–0.70535, ɛNd (37.2 Ma) = 1.54–1.9, and TDM ages ranging from 0.65 to 0.86 Ga are consistent with the melting of a Cadomian enriched lithospheric mantle source, metasomatized by fluids derived from the subducted slab or sediments during magma generation. These interpretations are consistent with high ratios of 206Pb/204Pb = 18.43–18.67, 207Pb/204Pb = 15.59, and 208Pb/204Pb = 38.42–38.71, indicating the involvement of subducted sediments or continental crust. The sill is considered to have been emplaced in an environment of lithospheric extension due to the slab rollback in the lower Eocene. This extension led to localized upwelling of the asthenosphere, providing the heat required for partial melting of the subduction-contaminated subcontinental lithospheric mantle beneath the Alborz magmatic belt. Then, the shoshonitic melt generates the entire spectrum of KDBS rocks through assimilation and fractional crystallization during the ascent of the magma.  相似文献   

18.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr = 0.7031–0.7048, 143Nd/144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events.  相似文献   

19.
High-Ti melanephelinite (3.8–5.9 wt% TiO2), medium-Ti (phono)tephrite (2.7–3.1 wt% TiO2), and low-Ti olivine melanephelinite/basanite (1.9–2.3 wt.% TiO2) are subordinate rock types in the central European Cenozoic Volcanic Province. A contrasting melanephelinite to (phono)tephrite series occurs in the Lou?ná–Oberwiesenthal Volcanic Centre (37–28 Ma) and also as satellite volcanic bodies (26–12 Ma) together with olivine melanephelinite/basanite (17–20 Ma) on the southwestern periphery of the Kru?né hory mountains (Erzgebirge). The volcanic rocks intrude the Variscan basement of the uplifted shoulder of the Oh?e/Eger Rift in the Kru?né hory mountains of the Bohemian Massif. Low Mg# (44–59) and Cr, Ni contents and enrichment of LILE, Zr, Hf, Nb, Ta, U, Th and LREE in the high-Ti melanephelinites contrast with the composition of primitive low-Ti olivine melanephelinites/basanites displaying high Mg# (63–74) and high contents of compatible elements. The high-Ti melanephelinites reveal a wide range in initial 87Sr/86Sr of ca. 0.7034–0.7038 and εNd of 2.4–4.9. The low-Ti melanephelinites show an overlapping range of initial 87Sr/86Sr of ca. 0.7035–0.7036 and εNd of 4.3–5.5. The large variation in initial 87Sr/86Sr ratios at similar εNd values in those rock types is interpreted as evidence for melting of metasomatized lithospheric mantle sources comprising K-bearing phases with radiogenic Sr. Modification of the olivine-free alkali basaltic magmas by differentiation or crustal contamination could give rise to the medium-Ti (phono) tephrites. The initial isotope ratios of all samples are consistent with HIMU-mantle sources and contributions from lithospheric mantle. The olivine-free melanephelinitic rocks often contain alkali pyroxenite–ijolite xenoliths with initial 87Sr/86Sr ratios of ca. 0.7036 and εNd of 3.0. We interpret these xenoliths as samples of an intra-crustal alkali complex derived from similar mantle sources as those for the basaltic volcanic rocks.  相似文献   

20.
The East-Ujimqin complex, located north of the Erenhot–Hegenshan fault, North China, is composed of mafic–ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing’an–Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U–Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic–ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic–ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U–Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2–14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9–12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic–ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic–ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280–276 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号