首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The regional stress field and seismic dynamics along the border zone between Fujian, Guangdong and Jiangxi Provinces are studied based on the seismo-geological data, GPS measurement, and seismicity. The results show that: (1) the principal compressional stress of the stress field is oriented in NW-SE direction and the principal extensional stress is in NE-SW direction; (2) the WNW-ward compression and collision of the Philippine Sea Plate to the eastern coast of Taiwan Island are the most direct and most important dynamic source for preparation and occurrence of strong earthquakes in the Taiwan area and along the border zone between Fujian, Guangdong and Jiangxi Provinces.  相似文献   

2.
福建沿海、台湾海峡GPS观测分析及地球动力学特征研究   总被引:1,自引:1,他引:1  
利用 3期GPS联测结果所获得的福建沿海地壳水平运动信息 ,采用ITRF94全球框架为基础的GPS测站地壳运动模型及其处理软件 ,对所获得的观测数据进行处理和精度分析。得到福建省高精度的GPS测站大地坐标、边长及其位移矢量 ,其精度达到 1 7×10 - 8。计算了福建地壳运动速率、主应变率 ,东西与南北向线应变率、面应变率、剪应变率、大地转动率和最大剪应变率等值线并给出了它们的分布图象。根据多年形变和现今GPS观测资料 ,分析福建地壳垂直运动与水平运动 ,显示区域应力场优势分布特征。最后 ,对福建沿海及台湾海峡地壳动力学特征作了初步的探讨  相似文献   

3.
台湾是菲律宾海板块与欧亚板块会聚、碰撞的产物,区内地质构造复杂,地震频发,变形强烈.为定量研究台湾地区变形特征及其动力学成因,文中运用二维不连续变形体弹性力学的有限单元计算方法,利用台湾地区1995—2005年GPS的观测结果作为边界约束,对台湾地区地壳变形场进行了模拟.计算结果显示,台湾中部地区主要呈压缩状态,但在台湾的东北部及南部地区出现了拉张的变形环境.变形程度最大的区域位于台湾东部海岸山脉及其附近海域,同时,计算给出台湾纵谷断裂滑移速率约为13.8~23.5mm/yr,由于纵谷断裂对变形的吸收,因此变形在纵谷断裂以西及西北地区迅速衰减.此外,计算结果还发现,计算给出的台湾岛上的速度值与GPS观测结果吻合得较好;计算给出的主应力方位与地应力观测及震源机制解结果也颇为一致.由此说明文中的有限元模型是合理的.此外,计算结果还表明,菲律宾海板块向北西方向的推挤,板块边界形状,观音、北康高地的抵阻,冲绳海槽扩张及琉球海沟的向南后撤以及断裂作用等,共同造成了台湾地区现今变形场的主要格局.  相似文献   

4.
用菲律宾海板块上7个站ITRF2000的速度建立了菲律宾海板块的整体旋转线性应变模型. 结果认为菲律宾海板块的现今运动是顺时针方向旋转,与NNR_NUVEL_1A估计的旋转方向一致,但与NNR_NUVE_1A估计的旋转极位置和旋转角速度有较大差别. 本文模型与Sella等建立的刚体运动模型相比能更精确地描述菲律宾海板块的现今构造运动与板内形变. 菲律宾海板块内部存在强烈的形变-应变场. 在板块上存在一致的向东形变,形变速率在中央构造线附近小,东、西边界附近大,南、北两端小,中部大,在Mariana弧上向东的形变速率达到484 mm/a. 板块上南北方向的形变,东、西部存在明显差别,东部的南北向形变速率很小,西部在Manila海沟附近南北向形变速率较大,北端向北的形变速率为113 mm/a,南端向南的形变速率为293 mm/a. 板块的中央构造线把板块的主应变场分为东、西两个区. 东区存在非常强烈的张应变,压应变则很弱. 主张应变为近东西方向,从中央构造线向东主张与主压应变率逐渐增加,板块东南边界附近(148°E,15°N)主张应变率最大为858×10-8/a. 在西区,存在很强的主压应变而主张应变则较弱,主压应变为NW-SE方向,主压与主张应变率呈现从中央构造向西逐渐增加的特征,在板块西北边界(122°E,23°N)附近,主压应变率最大为571×10-8/a. 菲律宾海板块主应变场的空间变化与板块内部及周围的构造背景密切相关,是构造应力场的反映.  相似文献   

5.
汶川MS8.0地震孕育发生的机制与动力学问题   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日四川省汶川县发生了MS8.0强烈地震.发震断层是龙门山断裂带的映秀—北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用是龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

6.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

7.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

8.
福建及沿海地区地震活动力源探讨   总被引:6,自引:0,他引:6  
史粦华  周峥嵘  鲍挺  倪晓寅 《地震》2006,26(2):104-112
综合地震震源机制解和地壳形变观测资料的研究, 求得福建及其沿海地区现代震源应力场, 认为这与台湾地区、 台湾海峡应力场相互衔接, 主压应力轴优势方位为NW-SE向, 力轴仰角较小, 应力场近于水平挤压, 形变场反映近期福建沿海亦受北西方向, 接近与海岸垂直的挤压力。 进一步分析该区域内的断裂构造特征和地震活动强度由东至西逐渐减弱的规律, 认为菲律宾海板块与欧亚板块的相互作用力不仅是台湾强震力源所在, 而且其影响向西扩展, 福建及其沿海地区地震活动主要力源仍然是来自这两大板块的相互作用力。  相似文献   

9.
李杰  刘代芹  王琪  王晓强  朱治国 《地震研究》2012,35(1):59-65,157
利用GPS数据研究南天山地区地壳运动特征,截取了该区域2005 ~ 2009年GPS数据,在统一框架下进行解算,并绘制出不同时段的主应变、剪应变以及基线变化速率等图像,研究表明该区域的地壳形变具有自西向东、自南向北减弱的特点,主压应变主要表现为受印度板块向北推挤而形成的近南北向压性应力场.2005~2009年基线变化速率表明,以喀什沿经线南北向为界,其东部区域基本上为压缩区,其西部区域基本上为拉张区,东部的基线缩短平均速率(4.84 mm/a)大于西部基线伸长的平均速率(3.06 mm/a),以喀什沿纬线东西向为界,其南部区域基线变化平均速率(5.58 mm/a)明显高于北部区域基线变化平均速率(3.52 mm/a),且伸长、压缩变化速率最大基线均在南部地区,说明南部区域受到塔里木块体和青藏高原挤压比较强烈,表明喀什南部区域地壳运动相对活跃.  相似文献   

10.
东南沿海地震区的现代构造应力场   总被引:11,自引:3,他引:11  
根据断层面的最新错动方向,震源机制解和地壳形变等资料,研究了东南沿海地区的现代构造应力场,结果表明:本区构造应力场可大致划分为两个分区:长乐-诏安断裂带以东地区主压应力轴为近东西向;以西地区的主压应力轴近南北向。  相似文献   

11.
台湾—吕宋会聚带的地壳运动特征及其动力学机制   总被引:3,自引:1,他引:2       下载免费PDF全文
南海东部的台湾-吕宋会聚带是南海四个边界中构造背景最为复杂、构造活动最为活跃.本文收集该区的GPS速度场资料,通过对速度场进行样条插值获得了该区连续的速度场、主应变率场、最大剪应变率场等结果.研究发现,该区的地壳运动受西北侧华南陆缘基底隆起和西南侧巴拉望岛阻挡、台湾北部24°N俯冲极转换、琉球海沟弧后扩张,以及菲律宾大...  相似文献   

12.
利用2009—2011、2011—2013、2013—2015年GPS形变资料,借助最小二乘配置方法、位移与应变的偏导关系,计算获得北天山东部应变场的动态演化结果,重新认识北天山东段构造区的现今活动特征,探讨应变场三个周期空间分布特征与2016年呼图壁6.2级地震的内部联系。结果表明:(1)区域地壳运动速率与应变场强度在时间上表现为“弱-强-弱”的变化特征,主应变率以NNW或NNE向的主压应变为主,第一、三周期N-S向主压应变较小,约(1~2)×10-8/a,第二周期变化显著增强,约(1~6)×10-8/a,第三周期滑动速率显示北天山东段呈“强[(2.2±0.4) mm/a]-弱(不明显)-强[(3.0±1.0) mm/a]”的右旋走滑特征;(2)地震可能更易发生在面应变率场等值线四象限中心区域或正、负过渡区的高密度梯度带内部,这可能是地震孕育过程中利用GPS资料观测到的形变前兆;(3)强震更易发生在剪应变率(最大剪应变率)的高值区或边缘区;(4)相对于面应变率与最大剪应变率等应变场物理量,主应变率更适用于在块体运动方向与性质上给出解释。  相似文献   

13.
推导了板块的弹性运动方程.根据太平洋板块(PCFC)上空间大地测量的观测结果,建立了PCFC的弹性运动模型,该模型与板块实际运动状态的符合程度明显地优于刚体运动模型.研究表明:PCFC现今旋转的角速度比过去3Ma的平均值大0037°/Ma;在PCFC内部存在明显的水平形变,在15°S以北和2045°E以西地区存在一致的向西形变,北西与南西方向的形变速率分别为08~35 mm/a与10~34 mm/a;在板块的东南区存在一致的向东形变,北东与南东方向的形变速率分别为15~18 mm/a与28~91 mm/a.PCFC内部水平应变场的空间变化是有规律的,在PCFC的西北部,主压应变轴为NW-SE方向,主压应变率大于主张应变率;在PCFC的东南部,主压应变轴为NE-SW方向,主张应变率大于主压应变率;PCFC的东南边界是扩张边界,边界附近的主张应变率最大(平均为151×10-9/a),主张应变轴基本上与洋中脊的扩张方向一致;PCFC的西北边界是俯冲边界,边界附近的主压应变率最大(平均为075×10-9/a),主压应变轴基本上与太平洋板块的俯冲方向一致.  相似文献   

14.
Based on the horizontal deformation field and the strain field derived from the GPS data over the period of 1999~2001 in the Yunnan area, the characteristics of deformation and strain in the northern part of Yunnan Province have been studied. The results indicate that the central part of the studied area is rather stable with little crustal displacement, while the western and eastern parts are active with larger displacement. The strain field reveals that the orientations of the principal compressive strain axis of the crust and the sub-blocks in the area are NW-SE, while the orientations of the principal tensile strain axis is NE-SW. In the studied area, the tensile strain is predominatly in the northern part and the compressive strain is predominatly in the central and southern parts. The stretching direction of the shear-strain contour is basically consistent with the strike of the active fault. The strain and stress fields of the fault activity are related to the structure where the fault is located, while the activity properties of the faults are different.  相似文献   

15.
根据1999~2009年网络工程GPS观测资料计算得到的应变率参数,研究了中国大陆地壳的应变应力场及其地壳现今的水平活动特征。结果表明,中国大陆地壳西部青藏亚板块的压应力主方向围绕藏南和阿萨姆构造结向北、东、南依次辐射撒开。新疆亚板块自西向东由近SN向变为NE向。中国大陆东部地壳的压应力主方向自北向南由NEE变为近EW向,再变为SEE向。中国大陆主压应力作用强度西部显著大于东部。中国大陆地壳西部强于东部,南部强于北部,现今西部地壳以挤压、走滑为主,东部地壳既有挤压、走滑,也有拉张。  相似文献   

16.
华夏地块东南部地壳地震各向异性特征初步研究   总被引:4,自引:5,他引:4       下载免费PDF全文
本研究采用SAM剪切波分裂分析方法,使用福建区域数字地震台网记录到的(1999年01月~2003年12月)的波形资料,挑选符合剪切波窗口条件的记录,得到华夏地块东南部地区23°N~29°N,116°E~120°E)10个台站的剪切波分裂参数. 研究结果表明,该区域快剪切波平均偏振方向为NW109.4°±42.6°,慢剪切波平均时间延迟为2.5±1.5(ms/km),快剪切波平均偏振方向对应该区的水平主压应力方向. 闽东台站NW方向的快剪切波偏振优势方向揭示了NW向的水平主压应力和NW走向断裂的构造意义. 两个闽西台站NE方向的快剪切波偏振优势方向与区域水平主压应力方向不一致,与NE走向的断裂一致,体现了局部构造和局部应力场的复杂性. 本研究证实,位于活动断裂上的台站的快剪切波偏振方向的优势方向与断裂走向一致,位于海边或岛上的台站的快剪切波偏振方向较为离散,主要是受到不规则表面地形和断裂交汇的影响. 慢剪切波延迟时间的空间分布特征,显示沿海地区慢剪切波延迟时间变化较大,而内陆地区则较为平缓.  相似文献   

17.
许多研究人员利用GPS测量的速度资料计算了地应变率场,但其结果差异较大. 本文将地质统计学中的Kriging方法引入到GPS观测的速度场研究中, 通过Kriging插值得到青藏高原及邻区均匀网格节点上的速度值,然后运用有限单元中形函数(Lagrange插值函数)的求导方法,计算每个网格单元积分点处的地应变率分量,从而获得青藏高原及邻区的地应变率场的分布. 计算结果显示,青藏高原主体处在南北向受挤压、东西向被拉张的应变状态之中,但高原东部地区则正好相反,即南北向拉张、东西向出现挤压. 青藏高原及邻区主应变率的方位与震源机制解中P轴、T轴的方向基本一致;最大主压应变率的高值区分布在喜马拉雅主边界冲断带及附近地区,高原内部出现主张应变率大于压应变率的现象,且高原内部处在拉张应变状态. 面膨胀率结果也表明,喜马拉雅山及附近地区为面收缩区,而高原内部其他地区主要为膨胀区;最大剪应变率分布清晰地显示出青藏高原周边的主要断裂带轮廓. 文中的应变率计算结果预示青藏高原及周边地区现今的地应变与较长期的地质活动之间有一定的继承关系.  相似文献   

18.
有关闽粤赣交界地区应力场和地震动力学的讨论   总被引:4,自引:0,他引:4  
从地震地质学、GPS测量、地震活动性等多个角度对闽粤赣交界地区的区域应力场和地震动力学进行了讨论,结果表明:(1)闽粤赣交界地区应力场的主压应力方向为北西-南东向,主张应力方向为北东-南西向;(2)菲律宾海板块在台湾东海岸向北西西方向的挤压碰撞作用是台湾地区和闽粤赣交界地区强震孕育和发生的最直接最主要的动力来源。  相似文献   

19.
中国大陆地壳水平运动速度场与应变场   总被引:1,自引:0,他引:1  
收集了中国大陆及周边地区GPS网的有关数据,提出了GPS网速度场的不同融合方法;经过融合建立了中国大陆及周边地区统一的地壳运动速度场,该速度场使用的有效GPS站共423个,其覆盖面积为1200万km^2;初步总结出中国大陆及周边地区地壳水平运动空间分布的基本特征;建立了板内块体的刚性弹塑性运动应变模型,对其进行了块体应变参数唯一性与速度残差中误差最小检验;根据中国大陆及周边地区的速度场,估计了8个块体的应变参数,分析了这些块体的应变状态,估计出的各个块体的应变状态与地质学、地球物理学方法估计的结果具有很好的一致性。用喜马拉雅块体主压应变方向估计的印度板块向欧亚板块碰撞力的主方向为北东7.1度。  相似文献   

20.
Based on the Chinese mainland GPS network (1994~1996), Fujian GPS network (1995~1997), cross fault deformation network (1982~1998), precise leveling network (1973~1980) and focal mechanism solutions of the recent several tens years, we synthetically and quantitatively studied the present-time crustal motion of the southeast coast of Chinese mainland-Fujian and its marginal sea. We find that this area with its mainland together moves toward SE with a rather constant velocity of 11.2(3.0 mm/a. At the same time, there is a motion from the Quanzhou bay pointing to hinterland, with a major orientation of NW, extending toward two sides, and with an average velocity of 3.0(2.6 mm/a. The faults orienting NE show compressing motions, and the ones orienting NW show extending motions. The present-time strain field derived from crustal deformation is consistent with seismic stress field derived from the focal mechanism solutions and the tectonic stress field derived from geology data. The principal stress of compression orients NW (NWW) - SE (SEE). Demarcated by the NW orienting faults of the Quanzhou bay and Jinjiang-Yongan, the crustal motions show regional characteristics: the southwest of Fujian and the boundary of Fujian and Guangdong are areas of rising, the northeast of Fujian are areas of sinking. The horizontal strain rate and the fault motion of the former are both greater than the later. The side-transferring motion of Hymalaya collision zone and the compression of the west pacific subduction zone affect the motion of the research area. The amount of motion affected by the former is larger than the later, but the former is homogeneous and the later is not, which indicates that the events of strong earthquakes in this region relate more directly with western pacific subduction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号