首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated with the high TOC and negative δ13Corg. These results indicated high river runoff in the PRE area. Peak river discharge occurred during the periods 1900–1750, 1500–1600, 1400–1200, 1000–900 and 750–600 cal yr BP. The main changes recorded in grain-size distributions, TOC contents, and δ13Corg variations appear to be directly related to monsoon precipitation in the sediment source area. An increased East Asian summer monsoon rainfall (EASM) and/or an enhanced East Asian winter monsoon rainfall could result in the increasing of monsoon rainfall. Typhoon related rainfalls could act as positive influence on precipitation levels. The study of the correlations between the rainfall records and ENSO activities revealed a close relationship between the monsoon rainfall in the PRE and the tropical Pacific variations. The frequent occurrence of ENSO might result in the southern migration of the EASM rain belt and lead to more typhoon-derived rainfall in the PRD during the late Holocene.  相似文献   

2.
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.  相似文献   

3.
Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.  相似文献   

4.
Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51–27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from − 14.5 to − 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4–δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51–27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.  相似文献   

5.
Sixteen groundwater samples collected from production wells tapping Lower Cretaceous Nubian Sandstone and fractured basement aquifers in Sinai were analyzed for their stable isotopic compositions, dissolved noble gas concentrations (recharge temperatures), tritium activities, and 14C abundances. Results define two groups of samples: Group I has older ages, lower recharge temperatures, and depleted isotopic compositions (adjusted 14C model age: 24,000–31,000 yr BP; δ18O: − 9.59‰ to − 6.53‰; δ2H: − 72.9‰ to − 42.9‰; < 1 TU; and recharge T: 17.5–22.0°C) compared to Group II (adjusted 14C model age: 700–4700 yr BP; δ18O: − 5.89‰ to − 4.84‰; δ2H: − 34.5‰ to − 24.1‰; < 1 to 2.78 TU; and recharge T: 20.6–26.2°C). Group II samples have isotopic compositions similar to those of average modern rainfall, with larger d-excess values than Group I waters, and locally measurable tritium activity (up to 2.8 TU). These observations are consistent with (1) the Nubian Aquifer being largely recharged prior to and/or during the Last Glacial Maximum (represented by Group I), possibly through the intensification of paleowesterlies; and (2) continued sporadic recharge during the relatively dry and warmer interglacial period (represented by Group II) under conditions similar to those of the present.  相似文献   

6.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

7.
This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.  相似文献   

8.
High-resolution natural abundance stable carbon isotope analyses across annual growth rings in evergreen trees reveal a cyclic increase and decrease in the measured carbon isotopic composition (δ13C), but the causes of this pattern are poorly understood. We compiled new and published high-resolution δ13C data from across annual growth rings of 33 modern evergreen trees from 10 genera and 15 globally distributed sites to quantify the parameters that affect the observed δ13C pattern. Across a broad range of latitude, temperature, and precipitation regimes, we found that the average, measured seasonal change in δ13C (Δδ13Cmeas, ‰) within tree rings of evergreen species reflects changes in the carbon isotopic composition of atmospheric carbon dioxide (Δδ13CCO2) and changes in seasonal precipitation (ΔP) according to the following equation: Δδ13Cmeas = Δδ13CCO2 - 0.82(ΔP) + 0.73; R2 = 0.96. Seasonal changes in temperature, pCO2, and light levels were not found to significantly affect Δδ13Cmeas. We propose that this relationship can be used to quantify seasonal patterns in paleoprecipitation from intra-ring profiles of δ13C measured from non-permineralized, fossil wood.  相似文献   

9.
The mobility and dietary preferences of now‐extinct proboscideans have not been comprehensively examined in the central USA. We used stable carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopic signatures in molar enamel to investigate the foraging ecology of four mastodons (Mammut americanum) and eight mammoths (Mammuthus spp.) from southwestern Ohio and northwestern Kentucky. We tested two hypotheses: (i) these individuals were nomadic migrants that were passing through the region when they died; and (ii) mammoths and mastodons foraged in different environments. Unexpectedly, our results suggest that 11 of the 12 sampled individuals were regional residents. With the exception of one mastodon, 87Sr/86Sr ratios for proboscideans and regional water samples were statistically indistinguishable; slightly lower ratios for waters suggest glacial loess has an impact on modern samples. Amongst the individuals identified as residents, 87Sr/86Sr ratios indicate that mammoths and mastodons foraged in discrete geographical areas, and δ13C values imply dietary differences between the genera, which is consistent with our expectations. Oxygen isotope values may be able to distinguish animals that lived during the Last Glacial Maximum (LGM) from those that lived more recently. Three mammoths and one mastodon yielded δ18O values that are similar to modern regional precipitation and surface water, but too high for estimated drinking water during the LGM. We propose that these individuals lived during a relatively warm period following the LGM. Compellingly, the mammoth with the highest δ18O value also has the lowest δ13C value, suggesting that this individual was alive after regional vegetation shifted from open parkland to deciduous forest dominated by C3 species. Our results demonstrate that a wealth of information can be gleaned from fossil museum specimens and lay a foundation for future work on the foraging ecology of proboscideans and other extinct megafauna from the Midwest USA.  相似文献   

10.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

11.
Bulk geochemical characterization (total organic carbon, grain size distribution, carbon isotope composition) and molecular biomarkers (lignin phenols, straight chain aliphatic hydrocarbons, glycerol dialkyl glycerol tetraethers) were analyzed for a 21 m core from the Bohai Sea (North China), spanning ca 21 ka BP. These paleo-proxies presented remarkable differences between the late glacial period and the Holocene, reflecting continental and coastal environments, respectively. Two peat layers were deposited during the period of ca 9000-8460 yr BP. Thereafter the core site has been consistently covered by seawater until recent reclamation of land from the sea. The occurrence of a total organic carbon maximum from ca 6000-3800 yr BP was attributed to delivery of organic carbon enriched sediments via the Yellow River, consistent with increased vegetation density and higher development of soil under warm and humid mid-Holocene climate conditions. The distributions of lignin phenol compositions and C31/C29n-alkane ratio suggested the largest expansion of woody plants between ca 5300 and 4000 yr BP, corresponding to the extremely favorable climatic conditions. Since ca 3800 yr BP, an abrupt increase in the C31/C29n-alkane ratio suggested higher abundance of grasses, consistent with a drying climate trend after the mid-Holocene. Since our coastal sediments close to the Yellow River outflow contain catchment-integrated environmental signals of the river basin, molecular proxies demonstrate that the variability of vegetation distributions in the Holocene is a widespread phenomenon in those areas adjacent to Yellow River Basin.  相似文献   

12.
The stable carbon isotopic composition (expressed as δ13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C4 versus C3 grass biomass (C4 relative abundance). However, the strength of the relationship between herbivore δ13C and C4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ13C of bone collagen and tooth enamel of kangaroos (Macropus spp.) collected throughout Australia by measuring δ13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C4 versus C3 growing seasons, was used as a proxy for C4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ13C (68%) and enamel δ13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ13C. While there was no relationship between collagen δ13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ13C, enrichment factors (ε) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ13C of a group of large herbivores closely reflect C4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C4 relative abundance.  相似文献   

13.
The late Holocene environmental history of the Lesotho highlands, southern Africa, is poorly understood with few detailed studies to date. At Likoaeng, Senqu Valley, Lesotho, a 3 m stratified sedimentary sequence from an open-air archaeological site records vegetation development for the period 3400-1070 cal. BP. Phytolith analyses and bulk sediment organic matter δ13C indicate that C4 grassland dominated the lower part of the sequence until approximately 2960 cal. BP when there was a switch to C3 Pooid grassland (2960-2160 cal. BP). Also noted was a change from hunting mainly bovids to a dominance of fishing at the site. The change in grassland type and archaeological subsistence strategies corresponds with an episode of neoglacial cooling and the expansion of Alpine sourgrasses into lower altitudes. From 2160 to 1600 cal. BP grassland became a mix of C3 and C4 types and by 1600-1070 cal. BP there was a return to C4 dominated grassland. During this latter phase there was a reversal from fishing to hunting again (and eventually some keeping of domestic livestock) at the site. These data outline the vegetation response to latitudinal shifts of frontal systems, and relatively strong atmospheric circulation variability, perhaps underpinned by variations of polar water into the Benguela Current during the late Holocene.  相似文献   

14.
The relationship between stable isotope composition (δ13C and δ18O) in seawater and in larval shell aragonite of the sea scallop, Placopecten magellanicus, was investigated in a controlled experiment to determine whether isotopes in larval shell aragonite can be used as a reliable proxy for environmental conditions. The linear relationship between δ13CDIC and δ13Caragonite (r2 = 0.97, p < 0.0001, RMSE = 0.18) was:
δ13CDIC=1.15(±0.05)∗δ13Caragonite-0.85(±0.04)  相似文献   

15.
Silica phytoliths, which are deposits of opal-A that precipitate in the intra- and intercellular spaces of plant tissues during transpiration, commonly contain small amounts of occluded organic matter. In this paper, we investigate whether the δ13C values of phytoliths from a C4 grass, Calamovilfa longifolia, vary in response to climatic variables that can affect the carbon-isotope composition of plant tissues. There is no significant correlation (r2 < 0.3) between climate variables and the δ13C values of C. longifolia tissues (average δ13Ctissue = −13.1 ± 0.6 ‰; n = 70) across the North American prairies. However, plant tissue δ13C values are lower for grasses collected in populated areas where the δ13C value of atmospheric CO2 is expected to be lower because of fossil fuel burning. Phytolith δ13C values are more variable (δ13C = −27.3 to −23.0‰; average = −25.1 ± 1.3‰; n = 34) and more sensitive to changes in aridity than whole tissue δ13C values. The strongest correlations are obtained between the δ13C values of stem or sheath phytoliths and humidity (r2 = 0.3), latitude (r2 = 0.4) and amount of precipitation (r2 = 0.5). However, use of these relationships is limited by the wide spread in δ13C values of phytoliths from different plant tissues at the same location. We have been unable to infer any relationship between δ13C values of phytoliths and expected variations in the δ13C values of atmospheric CO2. The C. longifolia phytoliths are depleted of 13C relative to tissue carbon by 10-14‰. This means that the phytoliths examined in this study have carbon isotopic compositions within the range reported previously for phytoliths from C3 plants. This observation may further limit the usefulness of soil-phytolith assemblage δ13C values for identifying shifts in grassland C3:C4 ratios.  相似文献   

16.
Gas was sampled regionally, including by drilling into faults, in the South Kanto gas-field around Tokyo Bay, Japan. Gas samples were collected from cores in a gas sampling container immediately after drilling. A value of δ13C1 = −44.3‰ was obtained for gas in the container and δ13C1 = −36.3‰ for seeping gas in a fault zone. However, typical CH4 in this dissolved-in-water gas-field is mainly depleted in 13C, and δ13C1 values range from −66‰ to −68‰ owing to microbial degradation of organic material. 13C-rich CH4 is so far uncommon in the South Kanto gas-field. Seepages were observed from the surface along the north–south fault zone. The natural gas is stored below the sandstone layer by impermeable mudstone underlying the boundary at a depth of 30 m. Gas seepages were not observed below a depth of 40 m. Gas rises along the fault zone dissolved-in-groundwater up to the shallow region and then separates from the groundwater. 13C-rich CH4 (adsorbed CH4) was found to have desorbed from drilled mudstone core samples taken at depths of 1400–1900 m in the main gas-production strata. Similarly, 13C-rich CH4 was found in black shale overlying the oceanic crust forming part of a sedimentary accretionary prism underling the Tokyo region. It also appears in the spring-water of spa wells, originating at a depth of 1200–1500 m along a tectonic line. Methane generated by microbial degradation of organic material through CO2 reduction in the South Kanto gas-field mainly originates as biogenic gas mixed with a small amount of 13C-rich CH4, derived from thermogenic gas without oil components in strata. It is assumed that 12C-rich CH4 is easily detached from core or pore water through gas production, whereas 13C-rich CH4 is strongly adsorbed on the surfaces of particles. The 13C-rich CH4 rises along the major tectonic line or up the 50 m wide normal fault zone from relatively deep sources in the Kanto region.  相似文献   

17.
Cave sediments collected from Reflection Cave on the Vaca Plateau, Belize show variations in the δ13C values of their fulvic acids (FAs), which indicate periods of vegetation change caused by climatic and Maya influences during the late Holocene. The δ13C values range from − 27.11‰ to − 21.52‰, a shift of ∼ 5.59‰, which suggests fluctuating contributions of C3 and C4 plants throughout the last 2.5 ka, with C4 plant input reflecting periods of Maya agriculture. Maya activity in the study area occurred at different intensities from ∼ 2600 cal yr BP until ∼ 1500 cal yr BP, after which agricultural practices waned as the Maya depopulated the area. These changes in plant assemblages were in response to changes in available water resources, with increased aridity leading to the eventual abandonment of agricultural areas. The Ix Chel archaeological site, located in the study area, is a highland site that would have been among the first agricultural settlements to be affected during periods of aridity. During these periods, minimal water resources would have been available in this highly karstified, well-drained area, and supplemental groundwater extraction would have been difficult due to the extreme depth of the water table.  相似文献   

18.
The skeleton of a young prime adult cave bear, Ursus spelaeus, was found in Chiostraccio Cave (Siena, Tuscany, central Italy), only slightly buried under rock falls. The specimen was dated yielding a conventional age of 24,030 ± 100 14C yr BP (29,200–28,550 cal yr BP), which makes it the latest known representative of the species in Italy. The skeleton was accompanied by the remains of wolf (Canis lupus), wild boar (Sus scrofa), aurochs (Bos primigenius), red deer (Cervus elaphus), roe deer (Capreolus capreolus), bat (Vespertinus murinus), and crow (Corvus monedula). The site seems confirming that the latest Italian U. spelaeus populations shared the risk of intrusion. The association of the cave bear with other animals suggests that the assemblage is an attritional palimpsest of remains of different species not originally associated in life. Cave bears were probably more vegetarian than brown bears and possibly became extinct when plant productivity dropped at the onset of MIS 2. Central and southern Italy may have offered isolated and sheltered refugia for cave bears.  相似文献   

19.
The abundance of the doubly substituted CO2 isotopologue, 13C18O16O, in CO2 produced by phosphoric acid digestion of synthetic, inorganic calcite and natural, biogenic aragonite is proportional to the concentration of 13C-18O bonds in reactant carbonate, and the concentration of these bonds is a function of the temperature of carbonate growth. This proportionality can be described between 1 and 50 °C by the function: Δ47 = 0.0592 · 106 · T−2 − 0.02, where Δ47 is the enrichment, in per mil, of 13C18O16O in CO2 relative to the amount expected for a stochastic (random) distribution of isotopes among all CO2 isotopologues, and T is the temperature in Kelvin. This relationship can be used for a new kind of carbonate paleothermometry, where the temperature-dependent property of interest is the state of ordering of 13C and 18O in the carbonate lattice (i.e., bound together vs. separated into different CO32− units), and not the bulk δ18O or δ13C values. Current analytical methods limit precision of this thermometer to ca. ± 2 °C, 1σ. A key feature of this thermometer is that it is thermodynamically based, like the traditional carbonate-water paleothermometer, and so is suitable for interpolation and even modest extrapolation, yet is rigorously independent of the δ18O of water and δ13C of DIC from which carbonate grew. Thus, this technique can be applied to parts of the geological record where the stable isotope compositions of waters are unknown. Moreover, simultaneous determinations of Δ47 and δ18O for carbonates will constrain the δ18O of water from which they grew.  相似文献   

20.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号