首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.  相似文献   

2.
Two sediment cores from Mauritia flexuosa palm swamps have been studied by pollen and charcoal analysis. The cores Fazenda Cigana (FC) and Terra Indígena Aningal (TIA) were taken from a savanna-forest ecotone area in the Roraima State, northern Brazilian Amazon. Based on 5 radiocarbon dates, these records allow the reconstruction of the vegetation fire and climate dynamics during the past 1550 years. At the FC site was recorded a higher proportion of forest cover, suggesting local wetter climatic conditions favorable for forest expansion, especially by gallery forests, between 1550 and 1400 cal yr BP. Stands of M. flexuosa started to establish on the site indicating sufficient soil moisture. From 1400 to 1050 cal yr BP, forest cover retreated while savanna, and the Mauritia palm swamp expanded considerably. The FC site was marked by savanna and Mauritia cover with a slight increase of forest between ca. 1050 and 900 cal yr BP. From 900 to 300 cal yr BP the savanna and palm swamp taxa became dominant and the forest area decreased. At the TIA site the savanna cover was dominant between 1200 and 1000 cal yr BP. From 1000 to 700 forest expanded while savanna and Mauritia palm swamp reduced. Between 700 and 300 cal yr BP savanna and Mauritia palm swamp increased and forest area decreased. The high amount of charred particles found in the sediments, indicate fires with a marked increase between 1400 to 1000 cal yr BP (FC site) and 700 to 300 cal yr BP (TIA site), and probably caused the retreat of forest cover during these two time intervals. The relatively lower fire activity after 300 cal yr BP until present-day favored the increase of forested area at both TIA and FC sites. The arrival of the European settler and the subsequent introduction of cattle, is suggested as the main reason for the decrease of fire in the study region. The results point the fire caused by indigenous people as the principal controlling factor for forest and savanna dynamics during the past 1550 years.  相似文献   

3.
We report high-resolution macroscopic charcoal, pollen and sedimentological data for Agua Caliente, a freshwater lagoon located in southern Belize, and infer a late Holocene record of human land-use/climate interactions for the nearby prehistoric Maya center of Uxbenká. Land-use activities spanning the initial clearance of forests for agriculture through the drought-linked Maya collapse and continuing into the historic recolonization of the region are all reflected in the record. Human land alteration in association with swidden agriculture is evident early in the record during the Middle Preclassic starting ca. 2600 cal yr BP. Fire slowly tapered off during the Late and Terminal Classic, consistent with the gradual political demise and depopulation of the Uxbenká polity sometime between ca. 1150 and 950 cal yr BP, during a period of multiple droughts evident in a nearby speleothem record. Fire activity was at its lowest during the Maya Postclassic ca. 950–430 cal yr BP, but rose consistent with increasing recolonization of the region between ca. 430 cal yr BP and present. These data suggest that this environmental record provides both a proxy for 2800 years of cultural change, including colonization, growth, decline, and reorganization of regional populations, and an independent confirmation of recent paleoclimate reconstructions from the same region.  相似文献   

4.
Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the ‘Medieval Climate Anomaly’, mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.  相似文献   

5.
This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.  相似文献   

6.
Vegetation assemblages and associated disturbance regimes are spatially heterogeneous in mountain ecosystems throughout the world due to the complex terrain and strong environmental gradients. Given this complexity, numerous sites describing postglacial vegetation and fire histories are needed to adequately understand forest development and ecosystem responses to varying climate and disturbance regimes. To gain insight into long-term historical climate–fire–vegetation interactions in southeastern British Columbia, Canada, sedimentological and paleoecological analyses were performed on a sediment core recovered from a small subalpine lake. The pollen assemblages, stomata, and macroremains indicate that from 9500 to 7500 cal yr BP, Pinus-dominated forests occurred within the catchment and Alnus was also present. Climate was an important control of fire and fire frequency was highest at this time, peaking at 8 fires 1000 yr− 1, yet charcoal accumulation rates were low, indicative of low terrestrial biomass abundance. From 7500 to 4600 cal yr BP, Pinus decreased as Picea, Abies and Larix increased and fire frequencies decreased to 3–6 fires 1000 yr− 1. Since 7500 cal yr BP the fire regime varied at a millennial scale, driven by forest biomass abundance and fuel accumulation changes. Local scale (bottom-up) controls of fire increased in relative importance since at least 6000 cal yr BP.  相似文献   

7.
A high-resolution pollen record from Path Lake in Port Joli Harbour, Nova Scotia, Canada, provides a paleo-ecological perspective on Holocene climate and vegetation variability within the context of local archaeological research. Pollen assemblages in the early Holocene reflect a post-glacial forest dominated by Pinus, Tsuga, Betula and Quercus. During this time, a lower frequency of radiocarbon dated cultural material suggests lower human settlement intensity. Shallow water aquatic (Isoetes) and wetland (Alnus, Sphagnum) taxa increased after 3400 cal yr BP in response to a transition towards wetter climatic conditions. Culturally significant periods, where settlement intensity increased in the Maritimes and Maine, coincide with maximum values of reconstructed total annual precipitation, suggesting that environmental conditions may have influenced prehistoric human activity. European settlement, after 350 cal yr BP, was marked by a rise in Ambrosia. The impact of anthropogenic fire disturbances on the landscape was evidenced by peak charcoal accumulations after European settlement.  相似文献   

8.
A 13,100-year-long high-resolution pollen and charcoal record from Foy Lake in western Montana is compared with a network of vegetation and fire-history records from the Northern Rocky Mountains. New and previously published results were stratified by elevation into upper and lower and tree line to explore the role of Holocene climate variability on vegetation dynamics and fire regimes. During the cooler and drier Lateglacial period, ca 13,000 cal yr BP, sparsely vegetated Picea parkland occupied Foy Lake as well as other low- and high-elevations with a low incidence of fire. During the warmer early Holocene, from ca 11,000–7500 cal yr BP, low-elevation records, including Foy, indicate significant restructuring of regional vegetation as Lateglacial Picea parkland gave way to a mixed forest of Pinus-Pseudotsuga-Larix. In contrast, upper tree line sites (ca >2000 m) supported Pinus albicaulis and/or P. monticola-Abies-Picea forests in the Lateglacial and early Holocene. Regionally, biomass burning gradually increased from the Lateglacial times through the middle Holocene. However, upper tree line fire-history records suggest several climate-driven decreases in biomass burning centered at 11,500, 8500, 4000, 1600 and 500 cal yr BP. In contrast, lower tree line records generally experienced a gradual increase in biomass burning from the Lateglacial to ca 8000 cal yr BP, then reduced fire activity until a late Holocene maximum at 1800 cal yr BP, as structurally complex mesophytic forests at Foy Lake and other sites supported mixed-severity fire regimes. During the last two millennia, fire activity decreased at low elevations as modern forests developed and the climate became cooler and wetter than before. Embedded within these long-term trends are high amplitude variations in both vegetation dynamics and biomass burning. High-elevation paleoecological reconstructions tend to be more responsive to long-term changes in climate forcing related to growing-season temperature. Low-elevation records in the NRM have responded more abruptly to changes in effective precipitation during the late Holocene. Prolonged droughts, including those between 1200 and 800 cal yr BP, and climatic cooling during the last few centuries continues to influence vegetation and fire regimes at low elevation while increasing temperature has increased biomass burning in high elevations.  相似文献   

9.
The Sierra Nevada of southern Spain is a landscape with a rich biological and cultural heritage. The range was extensively glaciated during the late Pleistocene. However, the postglacial paleoecologic history of the highest range in southern Europe is nearly completely unknown. Here we use sediments from a small lake above present treeline – Laguna de Río Seco at 3020 m elevation – in a paleoecological study documenting over 11,500 calendar years of vegetation, fire and climate change, addressing ecological and paleoclimatic issues unique to this area through comparison with regional paleoecological sequences. The early record is dominated by Pinus pollen, with Betula, deciduous Quercus, and grasses, with an understory of shrubs. It is unlikely that pine trees grew around the lake, and fire was relatively unimportant at this site during this period. Aquatic microfossils indicate that the wettest conditions and highest lake levels at Laguna de Río Seco occurred before 7800 cal yr BP. This is in contrast to lower elevation sites, where wettest conditions occurred after ca 7800. Greater differences in early Holocene seasonal insolation may have translated to greater snowpack and subsequently higher lake levels at higher elevations, but not necessarily at lower elevations, where higher evaporation rates prevailed. With declining seasonality after ca 8000 cal yr BP, but continuing summer precipitation, lake levels at the highest elevation site remained high, but lake levels at lower elevation sites increased as evaporation rates declined. Drier conditions commenced regionally after ca 5700 cal yr BP, shown at Laguna de Río Seco by declines in wetland pollen, and increases in high elevation steppe shrubs common today (Juniperus, Artemisia, and others). The disappearance or decline of mesophytes, such as Betula from ca 4000 cal yr BP is part of a regional depletion in Mediterranean Spain and elsewhere in Europe from the mid to late Holocene. On the other hand, Castanea sativa increased in Laguna de Río Seco record after ca 4000 cal yr BP, and especially in post-Roman times, probably due to arboriculture. Though not as important at high than at low elevations, fire occurrence was elevated, particularly after ca 3700 years ago, in response to regional human population expansion. The local and regional impact of humans increased substantially after ca 2700 years ago, with the loss of Pinus forest within the mountain range, increases in evidence of pasturing herbivores around the lake, and Olea cultivation at lower elevations. Though human impact was not as extensive at high elevation as at lower elevation sites in southern Iberia, this record confirms that even remote sites were not free of direct human influence during the Holocene.  相似文献   

10.
Atmospheric radiocarbon variations over the Younger Dryas interval, from 13,000 to 11,600 cal yr BP, are of immense scientific interest because they reveal crucial information about the linkages between climate, ocean circulation and the carbon cycle. However, no direct and reliable atmospheric 14C records based on tree rings for the entire Younger Dryas have been available. In this paper, we present (1) high-precision 14C measurements on the extension of absolute tree-ring chronology from 12,400 to 12,560 cal yr BP and (2) high-precision, high-resolution atmospheric 14C record derived from a 617-yr-long tree-ring chronology of Huon pine from Tasmania, Australia, spanning the early Younger Dryas. The new tree-ring 14C records bridge the current gap in European tree-ring radiocarbon chronologies during the early Younger Dryas, linking the floating Lateglacial Pine record to the absolute tree-ring timescale. A continuous and reliable atmospheric 14C record for the past 14,000 cal yr BP including the Younger Dryas is now available. The new records indicate that the abrupt rise in atmospheric Δ14C associated with the Younger Dryas onset occurs at 12,760 cal yr BP, 240 yrs later than that recorded in Cariaco varves, with a smaller magnitude of 40‰ followed by several centennial Δ14C variations of 20–25‰. Comparing the tree-ring Δ14C to marine-derived Δ14C and modelled Δ14C based on ice-core 10Be fluxes, we conclude that changes in ocean circulation were mainly responsible for the Younger Dryas onset, while a combination of changes in ocean circulation and 14C production rate were responsible for atmospheric Δ14C variations for the remainder of the Younger Dryas.  相似文献   

11.
Isotopic and pollen results from a marl lake (White Lake) in the Mid-Atlantic region of USA indicate the coupling of climate and vegetation changes. Oxygen isotopes of calcite from this site show multiple oscillations at millennial and centennial scales, including the Younger Dryas with 3‰ negative shifts in δ18O at 12.4-11.4 ka (1 ka = 1000 cal yr BP) and three cold events of magnitude 1-2‰ shifts during the Bølling-Allerød warm period (BOA) at 14.3-12.4 ka. Pollen data from the same core show nearly synchronous, close correspondence with isotope-inferred climate shifts, indicating rapid forest response to deglacial climate oscillations in southern New England. A plateau-like BOA is similar to other records around the North Atlantic Ocean.  相似文献   

12.
High-resolution charcoal and pollen analyses were used to reconstruct a 12,000-yr-long fire and vegetation history of the Tumalo Lake watershed and to examine the short-term effects that tephra deposition have on forest composition and fire regime. The record suggests that, from 12,000 to 9200 cal yr BP, the watershed was dominated by an open Pinus forest with Artemisia as a common understory species. Fire episodes occurred on average every 115 yr. Beginning around 9200 cal yr BP, and continuing to the present, Abies became more common while Artemisia declined, suggesting the development of a closed forest structure and a decrease in the frequency of fire episodes, occurring on average every 160 yr. High-resolution pollen analyses before and after the emplacement of three distinct tephra deposits in the watershed suggest that nonarboreal species were most affected by tephra events and that recovery of the vegetation community to previous conditions took between 40 and 100 yr. Changes in forest composition were not associated with tephra depositional events or changes in fire-episode frequency, implying that the regional climate is the more important control on long-term forest composition and structure of the vegetation in the Cascade Range.  相似文献   

13.
We present a late glacial pollen record (17,700 to 8500 cal yr BP) from a Lake Naleng sediment core. Lake Naleng is located on the southeastern Tibetan Plateau (31.10°N 99.75°E, 4200 m) along the upper tree-line. Variations in the summer monsoon are evident from shifts in vegetation that correspond to late glacial climate trends from other monsoon-sensitive regions. Alpine steppe was recorded between 17,700 and 14,800 cal yr BP, indicating low effective moisture at the study site. Expansion of alpine meadows followed by advances in the position of tree-line around Lake Naleng suggest that climate became warmer and wetter between ∼ 14,800 and 12,500 cal yr BP, probably representing an enhancement of the Asian monsoon. Climatic cooling and reduced effective moisture are inferred from multivariate analysis and the upward retreat of tree-line between ∼ 12,500 and 11,700 cal yr BP. The timing and nature of these shifts to warm, wet and then cold, dry climatic conditions suggest that they correspond to the Bølling/Allerød and Younger Dryas intervals. Abies-Betula forests, representing warm and moist conditions, spread during the early Holocene.  相似文献   

14.
Burial Lake in northwest Alaska records changes in water level and regional vegetation since ∼ 39,000 cal yr BP based on terrestrial macrofossil AMS radiocarbon dates. A sedimentary unconformity is dated between 34,800 and 23,200 cal yr BP. During all or some of this period there was a hiatus in deposition indicating a major drop in lake level and deflation of lacustrine sediments. MIS 3 vegetation was herb-shrub tundra; more xeric graminoid-herb tundra developed after 23,200 cal yr BP. The tundra gradually became more mesic after 17,000 cal yr BP. Expansions of Salix then Betula, at 15,000 and 14,000 cal yr BP, respectively, are coincident with a major rise in lake level marked by increasing fine-grained sediment and higher organic matter content. Several sites in the region display disrupted sedimentation and probable hiatuses during the last glacial maximum (LGM); together regional data indicate an arid interval prior to and during the LGM and continued low moisture levels until ∼ 15,000 cal yr BP. AMS 14C dates from Burial Lake are approximately synchronous with AMS 14C dates reported for the Betula expansion at nearby sites and sites across northern Alaska, but 1000-2000 yr younger than bulk-sediment dates.  相似文献   

15.
Bulk geochemical characterization (total organic carbon, grain size distribution, carbon isotope composition) and molecular biomarkers (lignin phenols, straight chain aliphatic hydrocarbons, glycerol dialkyl glycerol tetraethers) were analyzed for a 21 m core from the Bohai Sea (North China), spanning ca 21 ka BP. These paleo-proxies presented remarkable differences between the late glacial period and the Holocene, reflecting continental and coastal environments, respectively. Two peat layers were deposited during the period of ca 9000-8460 yr BP. Thereafter the core site has been consistently covered by seawater until recent reclamation of land from the sea. The occurrence of a total organic carbon maximum from ca 6000-3800 yr BP was attributed to delivery of organic carbon enriched sediments via the Yellow River, consistent with increased vegetation density and higher development of soil under warm and humid mid-Holocene climate conditions. The distributions of lignin phenol compositions and C31/C29n-alkane ratio suggested the largest expansion of woody plants between ca 5300 and 4000 yr BP, corresponding to the extremely favorable climatic conditions. Since ca 3800 yr BP, an abrupt increase in the C31/C29n-alkane ratio suggested higher abundance of grasses, consistent with a drying climate trend after the mid-Holocene. Since our coastal sediments close to the Yellow River outflow contain catchment-integrated environmental signals of the river basin, molecular proxies demonstrate that the variability of vegetation distributions in the Holocene is a widespread phenomenon in those areas adjacent to Yellow River Basin.  相似文献   

16.
Biodiversity loss, climate change, and increased freshwater consumption are some of the main environmental problems on Earth. Mountain ecosystems can reduce these threats by providing several positive influences, such as the maintenance of biodiversity, water regulation, and carbon storage, amongst others. The knowledge of the history of these environments and their response to climate change is very important for management, conservation, and environmental monitoring programs. The genesis of the soil organic matter of the current upper montane vegetation remains unclear and seems to be quite variable depending on location. Some upper montane sites in the very extensive coastal Sea Mountain Range present considerable organic matter from the late Pleistocene and other from only the Holocene. Our study was carried out on three soil profiles (two cores in grassland and one in forest) on the Caratuva Peak of the Serra do Ibitiraquire (a sub-range of Sea Mountain Range – Serra do Mar) in Southern Brazil. The δ13C isotopic analyses of organic matter in soil horizons were conducted to detect whether C3 or C4 plants dominated the past communities. Complementarily, we performed a pollen analysis and 14C dating of the humin fraction to obtain the age of the studied horizons. Except for a short and probably drier period (between 6000 and 4500 cal yr BP), C3 plants, including ombrophilous grasses and trees, have dominated the highlands of the Caratuva Peak (Pico Caratuva), as well as the other uppermost summits of the Serra do Ibitiraquire, since around 9000 cal yr BP. The Caratuva region represents a landscape of high altitude grasslands (campos de altitude altomontanos or campos altomontanos) and upper montane rain/cloud forests with soils that most likely contain some organic matter from the late Pleistocene, as has been reported in Southern and Southeastern Brazil for other sites. However, our results indicate that the studied deposits (near the summit) are from the early to late Holocene, when somewhat wetter and warmer conditions (since around 9000 cal yr BP) enabled a stronger colonization of the ridge of Pico Caratuva by mainly C3 plants, especially grassland species. However, at the same time, even near the summit, the soil core from the forest site already presented the current physiognomy (or a shrubby/elfin or successional forest), indicating that the colonization of the neighboring uppermost saddles and valleys were probably populated mainly by upper montane forest species.  相似文献   

17.
This study presents new ages for the northwest section of the Laurentide Ice Sheet (LIS) glacial chronology from material recovered from two retrogressive thaw slumps exposed in the Richardson Mountains, Northwest Territories, Canada. One study site, located at the maximum glacial limit of the LIS in the Richardson Mountains, had calcite concretions recovered from aufeis buried by glacial till that were dated by U/Th disequilibrium to 18,500 cal yr BP. The second site, located on the Peel Plateau to the east yielded a fossil horse (Equus) mandible that was radiocarbon dated to ca. 19,700 cal yr BP. These ages indicate that the Peel Plateau on the eastern flanks of the Richardson Mountains was glaciated only after 18,500 cal yr BP, which is later than previous models for the global last glacial maximum (LGM). As the LIS retreated the Peel Plateau around 15,000 cal yr BP, following the age of the Tutsieta phase, we conclude that the presence of the northwestern margin of the LIS at its maximum limit was a very short event in the western Canadian Arctic.  相似文献   

18.
A 30,000 yr dinocyst and pollen record from the eastern equatorial Atlantic (off Cameroon) has been investigated in order to identify land–ocean linkages during the last deglacial transition. A strong correlation between the abundance of Brigantedinium spp. and the Ca/Fe ratio during the last glacial period suggests enhanced marine productivity in association with cool seawater temperatures and nutrient input linked to coastal upwelling and/or a proximal river mouth. Dry conditions are recorded on the adjacent continent with a significant representation of open vegetation indicators and the Afromontane taxon Podocarpus. After 17 cal ka BP these indicators register a sharp decline as a result of a climatic transition from the dry/cooler conditions of the last glacial period to the wetter/warmer conditions of the deglaciation. Simultaneously, dinocysts show a significant shift from dominant heterotrophs to an increasing abundance of autotrophs, reflecting warmer conditions. Significant changes are observed during the Younger Dryas, with a return to drier conditions and higher salinities. The start of the Holocene is marked by very low-salinity conditions, reflecting optimal monsoonal conditions over west equatorial Africa. The end of the African Humid Period is observed between 6 and 5 cal ka BP, followed by significant fluctuations in both terrestrial and oceanic proxies.  相似文献   

19.
Sediment records from two lakes in the east-central Sierra Nevada, California, provide evidence of cooling and hydrological shifts during the Younger Dryas stade (YD; ~ 12,900-11,500 cal yr BP). A chironomid transfer function suggests that lake-water temperatures were depressed by 2°C to 4°C relative to maximum temperatures during the preceding Bølling-Allerød interstade (BA; ~ 14,500-12,900 cal yr BP). Diatom and stable isotope records suggest dry conditions during the latter part of the BA interstade and development of relatively moist conditions during the initiation of the YD stade, with a reversion to drier conditions later in the YD. These paleohydrological inferences correlate with similar timed changes detected in the adjacent Great Basin. Vegetation response during the YD stade includes the development of more open and xeric vegetation toward the end of the YD. The new records support linkages between the North Atlantic, the North Pacific, and widespread YD cooling in western North America, but they also suggest complex hydrological influences. Shifting hydrological conditions and relatively muted vegetation changes may explain the previous lack of evidence for the YD stade in the Sierra Nevada and the discordance in some paleohydrological and glacial records of the YD stade from the western United States.  相似文献   

20.
Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000–34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5 °C below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号