首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tritium data were collected between 1985 and 1987 on several cruises of the German research icebreaker “Polarstern” to the Weddell Sea. Maximum tritium concentrations in the surface waters are of the order of 200 mTU. The minimum values observed in the Weddell Sea Deep Water at about 1000 m depth are about 15–40 mTU. The bottom waters show tritium concentrations of about 70–100 mTU in the central gyre, increasing to about 120 mTU in the northwestern corner of the Weddell Sea. The overflowing Ice Shelf Water observed on the continental slope west of the Filchner Depression has tritium concentrations close to those of the surface waters, indicating rapid renewal of this water mass. The data reflect the rapid renewal of the bottom waters in the northwestern corner of the Weddell Sea and the mixing of bottom water from this boundary current into the bottom waters of the central Weddell Gyre.  相似文献   

2.
The salinity maximum of the Warm Deep Water advecting into the Weddell Sea lies about 200 m below the temperature maximum and an NO minimum. The NO minimum is horizontally as well as vertically resolved on two sections towards the eastern and southern coast of the Weddell Sea, one towards Cap Norvegia, the other towards the Filchner Ice Shelf, whereas the temperature and salinity maxima are horizontally resolved on the former section only. Thus NO is a valuable complementary tool in studying the boundary current along the coast of the Weddell Sea. The NO signal indicates a non-continuity within the boundary current, as the minimum in the downstream section (less than 480 μmol kg−1 ) is deeper than the upstream one ( more than 490 μmol kg−1). The temperature maximum as well as the NO minimum descend from a depth of about 400 m in the Cap Norvegia section to about 600 m in the Filchner Ice Shelf section, the salinity maximum being correspondingly lowered. A plot of NO vs. salinity shows a continuous mixing line between Warm Deep Water and the freshest part of the Winter Water interval, thus essentially displaying Winter Water as itself lying on a mixing line. This indicates that Warm Deep Water is being advected well into the winter surface layer.  相似文献   

3.
The first vertical profiles of chlorofluoromethanes (Freons F11 and F12) measured during the austral summer 1987 (INDIGO-3 cruise) in the region of Enderby Land (30°E) and the Princess Elizabeth Trough (90°E) arc presented in relation to hydrological and geochemical characteristics. In the open ocean, transient tracer penetration reaches 1000 m. Off the West Ice Shelf and Enderby Land, a significant decrease in Freons is found below the cold Winter Water and just above the deep oxygen minimum and temperature maximum of the upper Circumpolar Deep Water (200–400 m). In the region off MacRobertson Land, where the oxygen minimum is deeper (1000 m), the Freon gradients are less abrupt. In deep open ocean waters, no Freons were detected in the core of the Circumpolar Deep Water. However, near the continental shelf, we have encountered Freon minima associated with salinity maxima, indicating significant mixing between deep and (recent) ventilated waters. Over the whole water column, a strong zonal contrast emerges in tracer distributions between stations situated to the east and to the west of MacRobertson Land (65°E), which may be associated with the Weddell Gyre extension. Freon maxima associated with oxygen maxima and temperature and salinity minima that characterize Antarctic Bottom Water (AABW) have been found over all the region studied; the tracers indicate three main bottom waters that are related to Weddell Sea, Ross Sea and local origins. At two stations located on the edge of the continental shelf, Freon measurements suggest that the AABW formation was recent, and the tracers' continuity reveals a preferential westward flow of bottom waters. Although it is clear that bottom water formation takes place around 60–70°E, the information is too sparse to specify the source regions.  相似文献   

4.
Bottom water formation changes the characteristics of water masses entering the southern part of the Weddell Sea through atmosphere-ice-ocean interaction in which both sea and shelf ice play an important role. Modified water, in particular Weddell Sea Bottom Water, recirculates in the west. By comparing the in- and outflowing water masses we have estimated transformation rates on the basis of a data set obtained during the Winter Weddell Gyre Study from September to October 1989. This consisted of a salinity-temperature-depth (CTD) section carried out by R/V “Polarstern” from the northern tip of the Antarctic Peninsula to Kapp Norvegia and data from three current meter moorings maintained from 1989 to 1990 in the eastern boundary current off Kapp Norvegia. Because of the lack of sufficient direct current measurements in the interior and the western boundary current, it was necessary to derive mass transports on the basis of available data combined with physical and geometrical arguments. At the mooring site barotropic currents were measured. They were extrapolated to the interior under the assumption that wind-driven, baroclinic and barotropic current fields are of similar shape. The location of the gyre centre was determined from drifting buoy tracks and geopoten-tial anomaly. A linear current profile from the eastern boundary current to the centre of the gyre was assumed, and the western outflow was determined according to mass conservation. Different assumptions on the transition from the boundary current to the interior and the location of the centre result in a wide range of transports with most likely values between 20 and 56 Sv. The total mass transport was split into individual water masses. Differences between inflow and outflow result in a transformation rate of 3–4 Sv from Winter and Warm Deep Water to Antarctic and Weddell Sea Bottom Water. The net heat and salt transport across the transect implies heat fluxes from the ocean to the atmosphere of 3–10 W m−2 and ice formation rates of 0.2–0.35 m year−1.  相似文献   

5.
南极半岛周边海域水团及水交换的研究   总被引:1,自引:1,他引:0  
利用中国第34次南极考察于2018年1–2月在南极半岛周边海域获得的温盐、海流现场观测数据,分析了调查区域主要水团及水交换特征。结果表明,观测区域内主要存在南极表层水、绕极深层水、暖深层水、南极底层水、布兰斯菲尔德海峡底层水。威德尔海的暖深层水、威德尔海深层水通过南奥克尼海台东侧的奥克尼通道、布鲁斯通道和南奥克尼海台西侧的埃斯佩里兹通道进入斯科舍海,其中奥克尼通道的深层海流最强,流速最大可达0.25 m/s,密度较大的威德尔海深层水可以通过此通道进入斯科舍海;布鲁斯通道海流流速约为0.13 m/s,通过此通道的暖深层水位势温度较高;埃斯佩里兹通道海流流速约为0.10 m/s,通过此通道的暖深层水位势温度最低,威德尔海深层水密度最小。在南奥克尼海台东西两侧均观测到南向和北向的海流,但整体上来看,向北的海流和水交换更强。水体进入斯科舍海后,沿着南斯科舍海岭的北侧向西北方向流动,流速约为0.21 m/s。德雷克海峡中的南极绕极流仅有一部分向东进入斯科舍海南部海域,且受到向西流动的暖深层水、威德尔海深层水的影响,斯科舍海南部海域的绕极深层水明显比德雷克海峡中绕极深层水的高温高盐性质弱;受到南极绕极流的影响,南斯科舍海岭北侧的威德尔海深层水比南侧暖。南斯科舍海岭上的水体可能受到北侧绕极深层水、暖深层水,西侧陆架水,东侧冬季水的影响,因此海岭上水体结构较为复杂。  相似文献   

6.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

7.
The circulation and hydrography of the north-eastern North Atlantic has been studied with an emphasis on the upper layers and the deep water types which take part in the thermohaline overturning of the Oceanic Conveyor Belt. Over 900 hydrographic stations were used for this study, mainly from the 1987–1991 period. The hydrographic properties of Subpolar Mode Water in the upper layer, which is transported towards the Norwegian Sea, showed large regional variation. The deep water mass was dominated by the cold inflow of deep water from the Norwegian Sea and by a cyclonic recirculation of Lower Deep Water with a high Antarctic Bottom Water content. At intermediate levels the dominating water type was Labrador Sea Water with only minor influence of Mediterranean Sea Water. In the permanent pycnocline traces of Antarctic Intermediate Water were found.Geostrophic transports have been estimated, and these agreed in order of magnitude with the local heat budget, with current measurements, with data from surface drifters, and with the observed water mass modification. A total of 23 Sv of surface water entered the region, of which 20 Sv originated from the North Atlantic Current, while 3 Sv entered via an eastern boundary current. Of this total, 13 Sv of surface water left the area across the Reykjanes Ridge, and 7 Sv entered the Norwegian Sea, while 3 Sv was entrained by the cold overflow across the Iceland-Scotland Ridge. Approximately 1.4 Sv of Norwegian Sea Deep Water was involved in the overflow into the Iceland Basin, which, with about 1.1 Sv of entrained water and 1.1 Sv recirculating Lower Deep Water, formed a deep northern boundary current in the Iceland Basin. At intermediate depths, where Labrador Sea Water formed the dominant water type, about 2 Sv of entrained surface water contributed to a saline water mass which was transported westwards along the south Icelandic slope.  相似文献   

8.
Temperature, salinity and chlorofluorocarbons (CFCs) 11, 12 and 113 were measured on a line of stations along the front of the Ross Ice Shelf in the austral summers of 1984, 1994 and 2000. Water mass distributions were similar each year but with high variability in the cross-sectional areas. CFC concentrations increased and salinity decreased with time throughout the water column. CFC saturation levels in the shelf and surface waters also increased with time and ranged from 43% to 90%. The undersaturation was due to inflow of low-CFC modified Circumpolar Deep Water, gas exchange limited by sea ice cover and isolation of water from the atmosphere beneath the ice shelf. The residence time of dense shelf waters resulting from sea ice formation is less well constrained by the chemical data than is the strong flow into the Ross Ice Shelf cavity. Shelf waters are transformed over about 3.5 years, by net basal melting of the ice shelf, into fresher Ice Shelf Water (ISW), which emerges as a large plume near the central ice front at temperatures below the sea surface freezing point. We estimate an average ISW production rate of 0.86 Sv and an average net basal melt rate of 60 km3/year for the Ross Ice Shelf exceeding a 300 m draft (75% of the ice cavity) during recent decades from box and stream tube models fit to all of the CFC and salinity data. Model fits to the individual data sets suggest ISW production and net basal melt rate variability due to interannual changes on a shorter time scale than our observations. ISW production based on the CFC budget is better constrained than net basal melting based on thermohaline data, with a heat budget yielding a rate of only 20 km3/yr. Reconciling differences between apparent freshwater and temperature changes under the ice shelf involves considerations of mixing, freezing and the flow of meltwater across the ice shelf grounding line.  相似文献   

9.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

10.
The Vema Channel acts as a major conduit for the equatorward spreading of Antarctic Bottom Water between the Argentine and Brazil Basins. For almost two years the thermal stratification above its saddle depth (4660 m) – called Vema Sill – was recorded by moored thermistors and current meters. The lowest 490 m of the water column was instrumented to monitor the well-developed benthic boundary layer of Antarctic Bottom Water. The latter can be subdivided into Weddell Sea Deep Water on the sea bed and lower Circumpolar Deep Water above it. The data show fluctuations on various scales including periods, each about 1–2 weeks long, when the abyssal stratification virtually disappeared. Assuming a stable ratio between density and temperature, time series of bulk Richardson numbers are estimated from temperature and current shear data. The results suggest a potential for intermittent episodes of locally generated vertical mixing.  相似文献   

11.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

12.
We use hydrological and current meter data collected in the Ross Sea, Antarctica between 1995 and 2006 to describe the spatial and temporal variability of water masses involved in the production of Antarctic Bottom Water (AABW). Data were collected in two regions of known outflows of dense shelf water in this region; the Drygalski Trough (DT) and the Glomar-Challenger Trough (GCT). Dense shelf water just inshore of the shelf break is dominated by High Salinity Shelf Water (HSSW) in the DT and Ice Shelf Water (ISW) in the GCT. The HSSW in the northern DT freshened by ∼0.06 in 11 y, while the ISW in the northern GCT freshened by ∼0.04 in 8 y and warmed by ∼0.04 °C in 11 y, dominated by a rapid warming during austral summer 2001/02. The Antarctic Slope Front separating the warm Circumpolar Deep Water (CDW) from the shelf waters is more stable near GCT than near DT, with CDW and mixing products being found on the outer DT shelf but not on the outer GCT shelf. The different source waters and mixing processes at the two sites lead to production of AABW with different thermohaline characteristics in the central and western Ross Sea. Multi-year time series of hydrography and currents at long-term moorings within 100 km of the shelf break in both troughs confirm the interannual signals in the dense shelf water and reveal the seasonal cycle of water mass properties. Near the DT the HSSW salinities experienced maxima in March/April and minima in September/October. The ISW in the GCT is warmest in March/April and coolest between August and October. Mooring data also demonstrate significant high-frequency variability associated with tides and other processes. Wavelet analysis of near-bottom moored sensors sampling the dense water cascade over the continental slope west of the GCT shows intermittent energetic pulses of cold, dense water with periods from ∼32 h to ∼5 days.  相似文献   

13.
Henry's law constants were determined for α- and γ-hexachlorocyclohexane (HCH) as a function of temperature (0.5–45°C) in artificial seawater (SW; 30‰) and distilled water (DW) using the gas stripping method. Water samples (1–5 ml) were withdrawn from the stripping vessel during the stripping process (30–360 h), solvent extracted and analyzed by gas chromatography—electron-capture detection. The effect of bubbling depth was checked to ensure that bubbles leaving the system were at equilibrium with HCHs in the aqueous phase. Henry's law constants determined at 35 and 45°C in SW were significantly higher (P≤ 0.05) than in DW for both α- and γ-HCH, but not at lower temperatures. The slopes (m) and intercepts (b) of log H vs. 1 / T plots were: α-HCH (DW, 0.5–45°C); m = −2810 ± 110, B = 9.31 ± 0.38; α-HCH (SW, 0.5–23°C); M = −2969 ± 218, B = 9.88 ± 0.76; γ-HCH (DW, 0.5–45°C); M = −2382 ± 160, B = 7.54 ± 0.54; γ-HCH (SW, 0.5–23°C); M = −2703 ± 276, B = 8.68 ± 0.96. Henry's law constants determined in this study compared well with those calculated from reported vapor pressure and solubility data.  相似文献   

14.
The water under the main thermocline in the Japan Sea is a single water mass referred to as the Japan Sea Proper Water. It can be defined as having temperature below 2.0°C, salinity above 34.00%, and dissolved oxygen below 7.0 ml 1−1. In the north most of the water above the potential temperature 0.1°C depth (about 800–1000 m) is a mode water, with σθ of 27.32 to 27.34 kg m−3. North of 40°N it has high oxygen (more than 6.00 ml 1−1) with a distinct discontinuity (oxygen-cline) at the bottom of the mode water. The most probable region for the formation of the water is the area north of 41°N between 132° and 134°E. The deeper water probably is formed in the norther area of 43°N, and directly fills the main part of the Japan Basin north of 41°N and east of 134°E.  相似文献   

15.
Nutrient budgets for the South China Sea basin   总被引:3,自引:0,他引:3  
Varying atmospheric forcing and an elaborate geography make for a complex flow in the South China Sea (SCS). Throughout the year, the surface waters of the Kuroshio flow into the SCS, while the surface waters of the SCS flow out through the Bashi Channel. Cumulatively, there is a small (1 Sv) net outflow of surface water (0–350-m depth) from the SCS in the wet season, but a net inflow (3 Sv) in the dry season through the Bashi Channel. The differences are mainly made up by inflow and outflow of Sunda Shelf Water in the wet and dry seasons, respectively.Seawater, phosphorus, nitrogen and silicate budgets were calculated based on a box model. The results point out an intermediate water outflow (350–1350-m depth) into the West Philippine Sea (WPS) through the Bashi Channel in both the wet and dry seasons, though this, along with the nutrients it carries, is slightly larger in the dry season (2 Sv) than in the wet (1.8 Sv). More importantly, the export of nutrient-laden SCS intermediate water through the Bashi Channel subsequently upwells onto the East China Sea (ECS) shelf. The denitrification rate for shelves in the SCS is 0.11 mol N m−2 year−1, calculated by balancing the nitrogen budget. The oxygen consumption and the nutrient regeneration rates, based on the mass-balance and the one-dimensional advection–diffusion models, stand between those for the Bering Sea and the Sea of Japan.  相似文献   

16.
Total, dissolved and suspended iron has been determined in the water column of the Weddell Sea area during the austral summer 1988–1989. Some data are also presented for dissolved manganese, suspended manganese and suspended aluminium. The average value for dissolved iron was found to be 1.2 nM, with somewhat higher values at the Filchner Ice Shelf. The total iron was found to be considerably higher, with a range between 1 and 6 nM in the central Weddell Sea and 1 and 25 nM at the shelves. Transport of iron from the shelves into the Weddell Sea basin is demonstrated. This is observed both for total and dissolved iron.  相似文献   

17.
Water characteristics of the Yellow Sea Warm Current and its movement in summer are examined from the analysis of the recent hydrographic data collected in adjacent seas of Cheju Island. It is suggested that the Yellow Sea Warm Current water in the northeastern China Sea is a mixture of Western North Pacific Central Water and the Yellow Sea Bottom Cold Water in the ratio of 7 to 3. It is characterized by salinities of 34.2 < S < 34.5% and temperatures of 13 < T < 15°C at depths below 50 m. The Yellow Sea Warm Current does not seem to extend into the Yellow Sea as previously believed, at least in summer, but instead it turns eastward around Cheju.  相似文献   

18.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

19.
南极普里兹湾及其邻近海域水团研究   总被引:3,自引:3,他引:0  
普里兹湾及其邻近海域是中国南大洋调查研究的传统优势海域与重点区域。围绕夏季表层水、冬季水、陆架水、绕极深层水、南极底层水、普里兹湾底层水、冰架水等研究海区主要水团的特征和分布,总结了前人在南极普里兹湾及其邻近海域基于调查资料开展的水团研究中所取得的成果。研究表明,前人在对陆架水的示性指标界定上,将陆架水是否区分为高盐陆架水和低盐陆架水存在较大争议,在高盐陆架水和普里兹湾底层水的定义上存在重叠;目前尚没有证据表明绕极深层水向南可以伸展到普里兹湾的陆架区域,也没有发现在普里兹湾附近海域生成南极底层水的直接证据。  相似文献   

20.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号