首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Most measurements of long period ULF pulsations have come from ground based and single satellite observations. The observations have given strong support to the idea that these waves are resonant standing hydromagnetic waves on geomagnetic field lines. Simultaneous ground-satellite observations provide further details of the pulsation structure and are useful for examining the effect of the ionosphere on the transmission of the waves to the ground. Recently, multisatellite observations have been used to provide further insight into the nature of pulsations and we review the results obtained using this technique. Among the results presented are those from the ISEE 1 and 2 spacecraft which are closely spaced in identical orbits, making it possible to distinguish temporal from spatial structure in waves. The ISEE spacecraft have made measurements of resonant region widths and resonance harmonics. In addition, examples are shown of recent multisatellite observations of the global nature of some pulsations and the localization of Pi2 pulsations in space.  相似文献   

3.
For application to studies of the high latitude ionosphere, we have calculated ion velocity distributions for a weekly-ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV m?1. This shape persists for 1–2 hr after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fileds. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.  相似文献   

4.
5.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

6.
This paper studies two properties of chromospheric spicules: their angular distribution and the plasma velocity along their axes. To investigate the first property, we measured the apparent tilt of spicules at the limb, and then computed their actual distribution in space. This was achieved by solving first kind Fredholm or Volterra integral equations by various methods. The distribution of the axial velocity of the spicule plasma was studied on the basis of two types of observations: (1) the height variation of the spicules as a function of time and (2) the Doppler shift of the spectral lines. The resulting velocity distributions, using the experimental data of these two sets of observations, are quite different. The average velocity based on the Doppler shift measurements ( 40 km s–1) is greater than that based on height variation of spicules ( 20 km s–1). This is due to the ionization of the material as it penetrates the corona.  相似文献   

7.
The energy and angular distributions of electrons have been studied by combining small angle scatterings using analytical treatment with large angle collisions using Monte Caroo calculations as a function of column density for initially power-law electron distributions and incidence angles of 0, 30, and 60°. Using these distributions the X-ray and EUV line flux as a function of column density has been computed. The flux increases with increase in column density. At the initial column densities the contribution of non-thermal electrons for the production of line flux is negligible. However, it becomes significant at intermediate column densities at which the electron energy and angular distributions have non-Maxwellian nature. X-ray and EUV flux have also been calculated as a function of electron spectral index at a fixed column density. It falls steeply with increase in spectral index. The calculated flux is compared with the observations.  相似文献   

8.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

9.
Variation of electron energy and angular distributions has been studied as a function of column density by combining small-angle analytical treatment with large-angle Monte Carlo calculations. The distributions have been calculated for initial electron energy 300 keV and various incidence directions. Using these distributions and Sauter bremsstrahlung cross-section differential in photon energy and emission angle, we have calculated the X-ray energy and angular distributions for photon energies 10, 20, 50, 100, 150 and 200 keV. By taking the ratio of X-ray flux at 90 and 180°, we have computed the anisotropy ratio A as function of column density. Calculated anisotropy ratio compares well with ISEE-3 and PVO observations.  相似文献   

10.
The plasma particle velocity distributions observed in the solar wind generally show enhanced (non-Maxwellian) suprathermal tails, decreasing as a power law of the velocity and well described by the family of Kappa distribution functions. The presence of non-thermal populations at different altitudes in space plasmas suggests a universal mechanism for their creation and important consequences concerning plasma fluctuations, the resonant and nonresonant wave – particle acceleration and plasma heating. These effects are well described by the kinetic approaches where no closure requires the distributions to be nearly Maxwellian. This paper summarizes and analyzes the various theories proposed for the Kappa distributions and their valuable applications in coronal and space plasmas.  相似文献   

11.
Ion-acoustic rogue waves (IARWs) are addressed in a two-component plasma with a q-nonextensive electron velocity distribution. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries (K-dV) equation with a particular emphasis on its application to the IARWs. This K-dV equation is transformed to a nonlinear Schr?dinger equation, provided that the frequency of the carrier wave is much smaller than the ion plasma frequency. Interestingly, it is found that the IARWs may be drastically affected by electron nonextensivity depending on whether the entropic index q is positive or negative. In view of the crucial importance of RWs in space environments, our results should be useful in understanding the basic features of the nonextensive IARGs that may occur in space plasmas.  相似文献   

12.
Dipolarization fronts in the magnetotail plasma sheet   总被引:1,自引:0,他引:1  
We present a THEMIS study of a dipolarization front associated with a bursty bulk flow (BBF) that was observed in the central plasma sheet sequentially at X=−20.1, −16.7, and −11.0RE. Simultaneously, the THEMIS ground network observed the formation of a north-south auroral form and intensification of westward auroral zone currents. Timing of the signatures in space suggests earthward propagation of the front at a velocity of 300 km/s. Spatial profiles of current and electron density on the front reveal a spatial scale of 500 km, comparable to an ion inertial length and an ion thermal gyroradius. This kinetic-scale structure traveled a macroscale distance of 10RE in about 4 min without loss of coherence. The dipolarization front, therefore, is an example of space plasma cross-scale coupling. THEMIS observations at different geocentric distances are similar to recent particle-in-cell simulations demonstrating the appearance of dipolarization fronts on the leading edge of plasma fast flows in the vicinity of a reconnection site. Dipolarization fronts, therefore, may be interpreted as remote signatures of transient reconnection.  相似文献   

13.
The nonlinear properties of small amplitude electron-acoustic solitary waves (EAWs) in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili (KP) equation. At the critical ion density, the KP equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified KP equation. Moreover, the solitary solution, soliton energy and the associated electric field at the critical ion density were computed. The present investigation can be of relevance to the electrostatic solitary structures observed in various space plasma environments, such as Earth’s magnetotail region.  相似文献   

14.
15.
An exact theory is developed for a triple-probe in an orbit-motion-limited flowing collisionless plasma, i.e. when the charged particle mean free path ? Debye length ? probe radius, and the electron thermal velocity ? probe speed ? ion thermal velocity. Formulae for determining electron temperature and electron density are given for both spherical and cylindrical probes. Analytical results show that the effect of ion temperature on measurements of plasma parameters is small when the probe speed is large.  相似文献   

16.
Numerical analysis has been carried out on the one-dimensional quasi-linear relaxation of a group of fast electrons travelling through the plasma. It is demonstrated that the electron velocity distribution of fast electrons tends to be a plateau form exciting the electron plasma waves and that the plasma waves are almost completely reabsorbed later by electrons arriving later. Both the velocity range and time interval in which quasi-plateau distribution is formed increase with distance from the origin of the fast electrons. There is no net energy loss of the electron cloud during the travel through the plasma if we neglect both the collisional losses and the scattering of plasma waves. Although the present computation is preliminary and limited to rather low beam density, we can see that the characteristics of both the electron beam and the plasma waves tend, with distance, to those of the analytical solution given by Ryutov and Sagdeev; though a modification to set a low velocity cutoff on the plasma waves due to the thermal electrons is necessary.  相似文献   

17.
Three-dimensional calculations are presented for the circumplanetary nature of the iogenic plasma source (pickup ions produced by electron and charge exchange processes in the plasma torus) created by O and S gases located above Io's exobase in its corona and escaping extended neutral clouds (designated as the “Outer Region”). These calculations are undertaken using neutral cloud models for O and S with realistic incomplete collisional cascade source velocity distributions and rates at Io's exobase and realistic spacetime loss processes in the plasma torus. The resulting spatial distributions for O and S about Jupiter are highly peaked at Io but extend at much lower density levels all about the planet, particularly within Io's orbit where they may play a role in the pitch angle scattering and energy loss of radially inward diffusing energetic electrons for the synchrotron radiation belts of Jupiter, in producing bite-outs in the energy distribution of energetic heavy ions near Io's orbit, and in providing a charge exchange source for energetic neutral atoms (ENAs) detected both near and far from Jupiter. For the iogenic plasma source created by these neutrals, two-dimensional distributions produced by integrating the three-dimensional information along the magnetic field lines are presented for the instantaneous values of the pickup ion rates, the total- and net-mass loading rates, the mass-per-unit-magnetic-flux source rate, the pickup conductivity, the pickup radial current, and the pickup ion power (or energy rate). On the circumplanetary spatial scale, the instantaneous iogenic plasma source is highly peaked about Io's position on its orbit around Jupiter. The degree of orbital asymmetry and its physical origin are discussed, and overall spatially integrated rates are presented. The spatially integrated net-mass loading rate is 154 kg s−1 and the total (electron impact and charge exchange) mass loading rate is 275 kg s−1. Rough minimum estimates are made for the spatially integrated total-mass loading rate created by the “Inner Region” (spatial region below Io's exobase) and are at least ∼1 to 2.5 times larger than that for the Outer Region. Implications of the iogenic plasma source created by the Outer Region and the Inner Region are discussed.  相似文献   

18.
Analysis of observational data of OB stars show an, excellent agreement of the density distributions in space ?(x, y, z) as well as in velocity space \(\rho (\dot x,\dot y,\dot z)\) with the predictions of the density wave theory, the values for the density and velocity fluctuations are explained only by the non-linear theory. These theoretical calculations predict perturbations greater than ±10 km s?1, consistent with the observations for the velocity field. Thus one should disregard analytical treatments of the linearized equations since they predict maximum perturbations of ±5km s?1. Another consequence of this is the fact that the Gould's Belt is not a local anomaly, but a local feature of the density waves. The analysis of observational data show that the wave pattern is similar to that of the gas and dust.  相似文献   

19.
Interplanetary pick-up ions originate from ionizations of neutral interstellar atoms in the heliosphere. Over the past periods it was generally expected that after pick-up by the frozen-in solar wind magnetic fields these ions quickly isotropize in velocity space by strong pitch- angle scattering, they do, however, not assimilate to the ambient solar wind ions. Meanwhile careful investigations of pick-up ion data obtained with the plasma analyzers on AMPTE and ULYSSES could clearly reveal that, especially at periods of flow-aligned fields, noticeably anisotropic distributions must prevail. To better understand the evolutionary tracks of pick-up ions in interplanetary phase-space we carried out an injection study which takes into account all relevant convection and diffusion processes, i.e. describing pitch angle scattering, adiabatic cooling, drifts and energy diffusion. As demonstrated here particles injected at 1 AU establish a distribution function with substantial anisotropies up to distances beyond 6 AU. Only under the action of fairly strong isotropic turbulence levels a trend towards isotropy can be recognized. The bulk velocity of the injected pick-up ions turns out to be remarkably smaller than the solar wind velocity. It also is obvious that pick-ups are strongly spread out from that solar wind plasma parcel into which they were originally implanted. As one consequence it must be concluded that the derivation of interstellar He gas parameters, using He pick-up ion flux data, require appreciable caution. Due to anisotropic spatial diffusion the location of the LISM helium cone axis, i.e. the LISM wind vector, and the LISM helium temperature are hidden in the associated He+pick-up ion flux patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
C. C. Harvey 《Solar physics》1976,46(2):509-509
An attempt is made to explain the observed frequency-time profiles of type III solar radiobursts in terms of a rapid plasma wave decay rate combined with the exciter model recently proposed by the author. The decay rate is assumed to be sufficiently rapid for the plasma wave energy density profile to be similar to the excitor power density time profile; this is consistent with the exciter model, the rapid decay being caused by Landau damping on the electrons of the modified high energy tail of the ambient plasma electron velocity distribution. The model is compared with radio observations by making simple assumptions about the dependence of the radio intensity upon the plasma wave energy. A comparison is made with simultaneous radio and electron observations by further assuming a simple power-law velocity distribution for the electrons at their point of ejection from the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号