首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

2.
洋中脊及邻区洋盆的洋壳厚度能很好地反映区域岩浆补给特征,对于研究洋中脊内部及周缘岩浆活动和构造演化过程具有很好的指示意义.西北印度洋中脊作为典型的慢速扩张洋中脊,其扩张过程与周缘构造活动具有很强的时空关系.本文利用剩余地幔布格重力异常反演了西北印度洋洋壳厚度,由此分析区域内洋壳厚度分布和岩浆补给特征.研究发现,西北印度洋洋壳平均厚度为7.8 km,受区域构造背景影响厚度变化较大.根据洋壳厚度的统计学分布特征,将区域内洋壳分为三种类型:薄洋壳(小于4.5 km)、正常洋壳(4.5~6.5 km)和厚洋壳(大于6.5 km),根据西北印度洋中脊周缘(~40 Ma内)洋壳厚度变化特征可将洋中脊划分为5段,发现洋中脊洋壳厚度受区域构造活动和地幔温度所控制,其中薄洋壳主要受转换断层影响造成区域洋壳厚度减薄,而厚洋壳主要受地幔温度和地幔柱作用影响,并在S4洋中脊段显示出较强的热点与洋中脊相互作用,同时微陆块的裂解和漂移也可能是导致洋壳厚度差异的原因之一.  相似文献   

3.
洋中脊多金属硫化物已经成为人类重要的战略资源,科学的成矿模型是对其调查研究和勘探的重要依据.相较快速、慢速扩张洋中脊,超慢速扩张洋中脊在岩浆供给、构造和围岩等特征均存在明显差异,但目前对其热液循环及硫化物成矿模型缺乏系统梳理,制约了其资源勘探评价与研究的有效进程.本文系统总结了超慢速扩张西南印度洋中脊热液活动分布以及典型热液区的构造、热源、热液通道、围岩类型、流体性质和硫化物等特征,根据其成矿地质背景的差异性特点将该洋中脊赋存的热液系统分为局部强岩浆控制型、单向拆离/高角度大偏移距断层控制型以及双向拆离控制型三类,根据岩浆供给率(M值)的大小进一步将其划分为五种类型,从而建立了超慢速扩张西南印度洋中脊的局部强热供给-深大断裂控制硫化物成矿模型.超慢速扩张西南印度洋中脊扩张速率整体变化不大(14~18mm/a),岩浆供给呈分段不均匀性.通过近20年的调查研究,发现其发育类型多样的热液系统和硫化物.在岩浆供给充足的洋脊段,发育局部强岩浆供给条件下的深部岩浆房(4~9km).而在岩浆供给贫瘠的洋脊段,发育长期持续活动的深大拆离断层(可达13km),并沿拆离断层形成成矿带.因而超慢速扩张洋脊具...  相似文献   

4.
洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率 90mm·a-1)、慢速(全扩张速率20~50mm·a-1)和超慢速(全扩张速率20mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4km、7.2km和5.3km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1km、4.6~8.7km和4.2~10.2km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(10Ma)的洋壳比洋中脊(10Ma)的洋壳厚~0.3km,表明洋壳厚度与洋壳年龄有一定的正相关性.  相似文献   

5.
综合利用洋脊轴部的深拖侧扫声纳资料和轴外的水深数据,研究了超慢速扩张的西南印度洋洋脊处洋壳增生过程的瞬时变化。在洋脊各段的侧扫声纳图像中可以观察到轴部火山洋脊的长度与高度的差异,及这些火山建造不同的变形程度。这些差异是由于轴部火山洋脊处于其生命演化周期的不同发育阶段,包括火山建造期和构造裂解期。利用轴外侧的水深数据确定了每个洋脊段中许多大小均匀的深海丘陵。这些深海丘陵均显示不对称的形状,面向轴部为陡峭的断层崖,背向轴部为平缓倾斜的火山岩斜坡。这些深海丘陵是被运移到两翼的、已被裂解的早期轴部火山洋脊的残留,它们形成于连续的岩浆建造期和构造裂解期之中,即一个岩浆-构造旋回。在厚地壳的洋脊区段观察到大型深海丘陵,而在薄地壳的洋脊区段观察到小型深海丘陵。这说明岩浆供给量控制着深海丘陵的大小。在薄地壳的洋脊区段,深海丘陵有规律地等间隔排列,表明岩浆一构造循环的伪周期性过程持续约0.4ma,比厚地壳的洋脊区段的周期时间短4~6倍。我们认为,有规律的深海丘陵样式与长寿命洋脊段下部几乎恒定的岩浆持续供给有关。相比之下,在岩浆供给急剧减少并极不连续的情况下,不再存在有规律的深海丘陵样式。  相似文献   

6.
20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构   总被引:1,自引:1,他引:0       下载免费PDF全文
超慢速扩张的Mohns洋中脊共轭两侧的地球物理场与地壳结构具有显著的非对称性.利用我国第五次北极科学考察采集的水深、重力与磁力数据,结合历史资料,我们计算了14条垂直Mohns洋中脊剖面的扩张速率、剩余水深、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.对洋中脊共轭两侧以上计算结果的进一步对比发现,Mohns洋中脊两侧整体(下文均指同一地质时刻各剖面的平均值)的非对称性呈现明显的两段性:20~10.5 Ma,相比Mohns洋中脊东侧,西侧的扩张速率更慢、地壳更厚、非均衡地形更低;10.5~0 Ma,扩张速率、地壳厚度和非均衡地形的非对称的极性与20~10.5 Ma期间完全相反.后一阶段,整体扩张速率在西侧更快、剩余水深更浅,但是对应更薄的地壳和更高的非均衡地形.我们推断前者为冰岛沿Kolbeinsey洋中脊的作用增厚了Mohns洋中脊西侧地壳并使得洋中脊向西侧跳动,而后一阶段反映了岩浆供给减少后西侧集中的构造活动导致的更多的拉伸与隆升.沿各剖面上,10.5~0 Ma期间构造活动集中的洋中脊西侧均具有薄地壳和高非均衡地形,但构造拉伸的增加并不总是对应增快的扩张速率.岩浆在浅部更多地向东侧的分配以及洋中脊向西侧的跳动可能使得东西两侧具有相近的扩张速率.  相似文献   

7.
西南印度洋洋中脊(SWIR)是超慢速扩张洋脊的代表,是海洋地学研究热点.本文从SWIR多波束水深数据、重、磁数据和地震结构等几方面,阐述了SWIR热液活动区(49°39′E)的综合地质地球物理特征.SWIR热液活动不仅与扩张速率有关,构造作用更是一个重要控制因素;热液活动区位于Indomed和Gallieni转换断层之间,从水深地形上看,该区段洋脊是SWIR上水深最浅的区域之一,水深与MBA存在良好的镜像关系,MBA和RMBA低值意味着较厚的地壳厚度与较高的地幔温度,洋脊段27地壳厚度大于9km,可能是受到Crozet热点的影响;磁条带数据表明,此区段洋脊南北两翼呈不对称扩张,形成南翼的浅离轴域比北翼宽;在洋脊段28发现的活动热液喷口刚好位于热液蚀变形成的低磁强区内,具有良好的硫化物资源.这些认识必将为在该区首次实施的三维地震探测研究的地质地球物理解释及活动热液喷口的动力学机制研究打下坚实基础.  相似文献   

8.
利用西南印度洋脊中段Indomed-Gallieni洋段49-51°E区段全覆盖高分辨率多波束水深地形资料,应用构造地貌学分析方法,结合区域地形及其他地球物理等资料,在分段分析49-51°E区段岩浆-构造动力学模式的基础上,进一步探讨了约10 Ma以来Indomed-Gallieni洋段的演化史.28、29洋段目前岩浆供应不足,在轴部不对称深断层的控制之下不对称扩张,属于超慢速扩张洋脊较常见的演化方式.轴部火山建造主要向北翼增生,发育与火山脊相关的火山地貌;南翼构造拉张作用强烈,地貌上可观察到大量断块,拆离断层可能大量存在.而27洋段水深浅、火山密集、轴部缺失裂谷,超慢速扩张下却具有较高的岩浆通量.Indomed-Gallieni洋段地形高地建造于一次岩浆增强事件,但应该不是因为Crozet热点的影响.27洋段为目前仍受该岩浆增强事件影响的唯一区段,但其强度和规模也在逐渐减小;包括28、29洋段在内的Indomed-Gallieni段其他部分,已重新恢复到岩浆供应不足的正常超慢速扩张洋脊演化模式.28、29洋段和27洋段岩浆供应均存在岩浆通量由多至少的周期,周期内岩浆供应较多时期轴部建脊,减少时期轴部火山建造裂离.但27洋段由于仍受岩浆增强事件的影响,与28、29洋段表现形式不同,主要表现为火山建造裂离方式、岩浆供应周期长短以及构造活动强烈程度的不同.  相似文献   

9.
洋中脊构造及地震调查现状   总被引:1,自引:0,他引:1  
介绍了洋中脊的全球分布和构造特征,对全球主要的、不同扩张速率的洋中脊进行了分类和列表描述;对洋中脊的构造特征,如地形特征、地壳厚度与扩张速率的关系及扩张轴下的岩浆房的特征、洋中脊与地幔柱的相互作用进行了阐述。回顾了海底地震仪在洋中脊构造调查中的应用及取得的主要成果。简要介绍了我国将用海底地震仪开展洋中脊构造调查的技术路线。  相似文献   

10.
西南印度洋中脊(SWIR)增生的洋壳面积仅占印度洋的15%左右,但其具有比东南印度洋中脊和西北印度洋中脊更悠久而复杂的演化历史.基于已有的地质、地球物理和地球化学等资料,系统总结了SWIR的地质构造特征,并讨论了SWIR的演化过程、洋脊地幔的不均一性、洋脊周边海底高原成因等核心问题.SWIR地形中段高、东西两段低,空间重力异常基本与地形变化一致.按转换断层一级边界可将SWIR划分为20个一级段.SWIR的磁异常条带呈现两端渐进式分布和中段带状分布特征,对应洋脊的三期演化历史.SWIR的地幔源区极不均一,尤其是中新元古代造山带根部集中拆离的中段.源区地幔的不均一性与大陆裂解和洋脊演化过程密切相关.SWIR的东端与西北印度洋中脊和东南印度洋中脊的邻近洋脊段具有地球化学亲缘性,西端与大西洋中脊和南美洲—南极洲洋中脊的邻近洋脊段具有地球化学亲缘性,这与SWIR的渐近式扩张有关.SWIR周边海底高原普遍具有较大的地壳厚度,其成因除了陆壳基底之外,可能与热点火山作用、热点-洋脊相互作用或热点-三联点相互作用有关,目前尚未形成统一的认识.SWIR的形成演化及其作用域内的熔融异常(如海底高原)是冈瓦纳大陆裂解、残留岩石圈地幔、软流圈地幔和深部地幔热柱物质共同作用的结果.了解SWIR的演化过程对揭示冈瓦纳大陆的裂解过程和印度洋的演化具有重要意义.  相似文献   

11.
云南西部地壳深部结构特征   总被引:10,自引:3,他引:7       下载免费PDF全文
在云南西部,穿过红河、小江断裂带完成了一条长360 km、呈北东向的深地震宽角反射/折射剖面.通过对该测线的观测资料进行一维、二维模拟解释,得到了沿剖面的二维地壳速度模型.研究结果显示,沿测线Moho界面埋深横线变化大,其西南侧Moho埋深约35 km,东北侧Moho最大埋深可达43 km.沿剖面从西南到北东方向,地壳平均P波速度从5.9 km/s逐渐增加到6.13 km/s,但显著低于全球大陆平均值.结合以往的接收函数和面波联合反演结果,我们推算沿测线从西南到东北,其下方地壳泊松比介于0.23~0.25之间.剖面西南侧上地壳具有异常低的P波速度和泊松比,暗示其下方上地壳以α-相长英质组分为主;而剖面东北上地壳相对较高的P波速度和泊松比则暗示其物质组成以花岗岩-花岗闪长岩为主.研究区下地壳的P波速度和泊松比分别介于6.25~6.75 km/s和0.24~0.26 km/s之间,暗示其上部组成以花岗岩相的片麻岩为主,而下部组成则以角闪石类岩石为主.红河断裂两侧地壳速度显著不同,从浅到深其速度差异逐渐变弱,但红河断裂两侧地壳厚度变化较大.而小江断裂下方两侧地壳速度和地壳厚度变化并没有红河断裂那么明显.  相似文献   

12.
收集华北克拉通地区188个宽频带流动台站观测资料进行处理.通过背景噪声面波数据和接收函数双重资料约束联合反演,得到了研究区沉积层厚度、地壳厚度及地壳S波速度结构.结果显示:(1)沉积盖层厚度与地质构造相对应,盆地区与隆起区分界明显.(2)研究区地壳厚度变化范围约29~46 km,自西向东逐渐变薄.(3)中、上地壳华北盆地S波速度偏高,可能与新生代以来多次沉降所造成的相对高的岩石强度有关;(4)下地壳S波速度显示研究区主要存在三个低速区,分别是唐山—天津周边、张北及太行山造山带地区;华北盆地存在显著高速异常,推测可能是由于华北盆地经历下地壳拆沉后,大规模的伸展作用相伴随的幔源基性铁镁质岩浆底侵至下地壳结晶所造成的.(5)多个发生过强震的区域表现出沉积层下方存在较大范围的(约10 km)高速体,并且高速体又被其下低S波速度包裹,壳内岩石强度的差异为应力积累及地震发生提供条件.  相似文献   

13.
腾冲火山区的地壳厚度和平均泊松比研究   总被引:2,自引:1,他引:1       下载免费PDF全文
胥颐  李雪垒  汪晟 《地球物理学报》2017,60(6):2256-2264
腾冲是青藏高原东南缘重要的第四纪火山活动区域,全新世以来的火山主要集中在腾冲盆地的中央,由北向南形成一个串珠状的火山链.为了深入探索这一火山区的深部结构和岩浆活动特征,我们在腾冲北部开展了为期一年的流动地震观测,利用接收函数方法计算了台站下方的地壳厚度、平均波速比和泊松比,研究结果揭示出测线下方地壳结构与岩浆活动及火山分布的对应关系.测线北部7个台站的地壳厚度在35.4~37.6 km之间,平均波速比为1.82~1.92、泊松比为0.28~0.31,其中马站附近莫霍面抬升幅度最大,与相邻地区莫霍面深度相差1~2 km,平均波速比和泊松比也达到最大值.相比之下,测线南端两个台站的地壳厚度接近40 km,平均波速比和泊松比仅为1.61~1.64和0.18~0.20,与测线北部7个台站的地壳结构相差甚大.分析表明地幔上涌对火山区莫霍面的局部抬升产生了一定影响,火山湖、黑空山、大-小空山和打鹰山下方应该存在一个相互联通的壳内岩浆囊.该岩浆囊在南北方向上的尺度约为20 km,热流活动以及幔源物质的侵入是地壳平均波速比和泊松比偏高的主要原因,它与热海附近的地温异常区分属两个不同的壳内岩浆存储系统.  相似文献   

14.
穿越东沙隆起和潮汕坳陷的OBS广角地震剖面   总被引:15,自引:9,他引:6       下载免费PDF全文
为了探明南海中北部陆缘深部地壳结构,使用2D射线追踪正演和反演方法,拟合了一条南海中北部陆缘的OBS广角地震剖面(OBS2006-3).该剖面穿越东沙隆起和潮汕坳陷,长319 km,NNW-SSE走向,共投放海底地震仪14台.速度结构模型表明:潮汕坳陷存在巨厚的中生代沉积,最大厚度达到8 km,速度从顶部的4.4 km...  相似文献   

15.
玉树震区及邻近地区壳幔速度结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
对获得的玉树震区的人工地震测深资料,利用正演拟合地震测深方法进行处理与计算,获得了玉树震区的地壳速度结构和构造的基本特征。结果表明,不同区域的地壳速度结构在纵向和横向上均具有明显的非均匀性。 地壳呈层状结构,研究区结晶基底界面起伏较大,玉树附近下方较厚达8km左右,在400.0km桩号向北至温泉方向基底结构逐渐减薄为2.5km。基底界面的凹陷、隆起与不同的地质构造单元具有较好的对应关系;地壳厚度由囊谦、玉树附近的72km向南、北逐渐减薄为62km。在200.0~400.0km桩号之间二维速度等值线及壳内界面起伏变化较大,在玉树附近下方莫霍面有一弧形凹陷。  相似文献   

16.
广角地震测线(OBS973-2)位于南海南部陆缘,其地壳深部构造是研究南海共轭扩张及形成演化的直接证据之一.本文采用2D射线追踪技术,结合与之重合的多道地震测线(NH973-2)时深转换结果,对OBS973-2测线重新进行了正、反演研究,得到了礼乐滩及邻近海区的精细地壳结构.与前人结果相比,本文基于正反演速度模型,把测线分为陆壳区(0~200 km)、洋陆过渡区(200~280 km)和洋盆区(280~370 km).地壳结构在不同区域差异明显,陆壳区沉积层厚度横向差异大,且速度横向不均匀,地壳整体厚度大(约20 km),有横向速度差;洋陆过渡区速度和厚度横向均匀,地壳减薄(约8 km);洋壳区地壳厚度减薄至6 km.与以往研究相比,新的认识集中在两个方面,(1)在方法上,综合广角地震和多道地震数据,借助正演和反演方法,能够得到更多更可靠的地壳结构信息.(2)在地壳结构上,结合广角地震与多道地震,得到洋陆过渡区莫霍面向海减薄的形态及其埋深(约12~18 km,海平面为0 km);进一步验证礼乐滩区域在洋陆过渡区没有明显的高速层,为非火山型陆缘,其共轭扩张点为中沙地块;陆壳区上地壳强烈的拉张作用在速度模型表现出横向速度异常和低速区,在多道地震剖面上表现为大量10~20 km的正断层.  相似文献   

17.
跨1679年三河-平谷8.0级地震区完成的单次覆盖深地震反射剖面和浅层地震反射剖面,揭示了三河-平谷地震区的地壳结构和断裂的深、浅构造特征.结果表明,该区地壳以TWT6~7 s左右的强反射带为界分为上地壳和下地壳,上地壳厚约18~21 km,下地壳厚约13~15 km.剖面揭示的地壳深断裂和浅部活动断裂具有上下一致的对...  相似文献   

18.
Measurements of the seafloor deformation under ocean waves (compliance) reveal an asymmetric lower crustal partial melt zone (shear velocity less than 1.8 km/s) beneath the East Pacific Rise axis between 9° and 10°N. At 9°48′N, the zone is less than 8 km wide and is centered beneath the rise axis. The zone shifts west of the rise axis as the rise approaches the westward-stepping 9°N overlapping spreading center discontinuity and is anomalously wide at the northern tip of the discontinuity. The ratio of the compliance determined shear velocity to the compressional velocities (estimated by seismic tomography) suggests that the melt is well-connected in high-aspect ratio cracks rather than in isolated sills. The shear and compressional velocities indicate less than 18% melt in the lower crust on average. The compliance measurements also reveal a separate lower crustal partial melt zone 10 km east of the rise axis at 9°48′N and isolated melt bodies near the Moho beneath four of the 39 measurement sites (three on-axis and one off-axis). The offset of the central melt zone from the rise axis correlates strongly with the offset of the overlying axial melt lens and the inferred center of mantle melting, but its shape appears to be controlled by crustal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号