首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An attempt was made to evaluate background concentrations of Cd, Cu, Pb and Zn by means of geochemical and statistical approach. As many as 753 samples taken from 51 profiles located in Eastern Poland were analysed. For the estimation of geochemical background values, direct geochemical methods and a statistical analysis for the whole population of samples were applied. Average values of heavy metal concentration in loess sediments (bedrock) as well as in profiles not affected by human activity were measured. The iterative 2σ technique and calculated distribution function were chosen as statistical methods. The resulting values (background concentrations range) were as follows: Cd 0.5–0.9 mg kg−1, Cu 5–16 mg kg−1, Pb 12–26 mg kg−1 and Zn 31–47 mg kg−1. All the methods applied gave similar results. The highest deviation of the background was noted for Cu and the lowest for Zn. The lowest values of background were obtained for loess sediments and the highest in the case of the multiple 2σ method.  相似文献   

2.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

3.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

4.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

5.
Xiamen Bay (XMB) has received substantial loadings of pollutants from industrial and municipal wastewater discharged since the 1980s. To assess ecological risks and the current spatial changes of metal contaminants in bottom surface sediments, 12 samples were collected. Samples were subjected to a total digestion technique and analyzed by ICP–OES for Cu, Pb, Zn, Cr, and Cd, and by AFS for Hg and As. Among these metals, Zn had the highest values (68–268 mg kg−1), followed by Pb (27–71 mg kg−1), and lower concentrations were found for Cd (42–1,913 μg kg−1) and Hg (0–442 μg kg−1). In comparison with the average crustal abundance values, the results indicated that nearly half of the sediment samples of XMB and its adjacent areas were contaminated by Cd, Pb, Zn, and As. Furthermore, based on the modified BCR sequential extraction procedure, the chemical speciation of heavy metals (Cd, Cr, Cu, Pb, Zn, Hg, and As) in selected sediment samples were evaluated in this study. Data from BCR sequential extractions indicated that Cd posed a medium ecological risk, whereas, Cr posed low risk since its exchangeable and carbonate fractions were below 4%, and the mobility of heavy metals in XMB decreased in the order Cd > Pb > Cu > Zn > Hg > As > Cr. By applying mean effects range median quotients (mERMQ), the results showed that Yuandang Lagoon with mERMQ value >0.5 would be expected to have the greatest potential toxic risk in amphipod within XMB and its adjacent areas.  相似文献   

6.
The distribution and partitioning of trace metals (Co, Cu, Fe, Mn, Ni, and Zn) between dissolved and particulate phases were studied in the Tanshui Estuary. The upper reach of the estuary is hypoxic and heavily polluted due to domestic and industrial discharges. The concentration ranges of dissolved and leachable particulate trace metals in the Tanshui Estuary were: Co: 0.3–6.1 nM, 1.8–18.6 mg kg−1; Cu: 5–53 nM, 22–500 mg kg−1; Fe: 388–3,364 nM, 1.08–6.67%; Mn: 57–2,914 nM, 209–1,169 mg kg−1; Ni: 7–310 nM, 6–108 mg kg−1; and Zn: 12–176 nM, 62–1,316 mg kg−1; respectively. The dissolved concentrations of the metals were 2–35 times higher than the average values of the world river water. The distributions of dissolved and particulate studied metals, except Mn, in the estuary showed scattering, which could be attributed to the discharges from many industrial wastewater disposal works located in the upper tributaries. The daily input of dissolved metals from the disposal works to the Tanshui Estuary ranged from 0.1–0.4 tons. Dissolved Mn was nearly conservative in the region with salinity higher than 10 psu, while particulate Mn decreased in the region with salinity of 10–15 psu. The concentration increased significantly seawards, corresponding with the distribution of dissolved oxygen. The distribution coefficient (KD) for Mn in the lower estuary was nearly three orders of magnitude higher than in the upper estuary. This phenomenon may be attributed to the diffusion of Mn from the anoxic sediment in the upper estuary and gradual oxidation into particulate Mn in the middle and lower estuary as the estuarine water became more oxygenated. The distribution coefficient for Cu decreased with increasing salinity. The percentages of trace metals bound by suspended particulate matter decreased in the following order: Fe>Zn, Cu>Co>Mn>Ni.  相似文献   

7.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

8.
Heavy metal pollution and their fractionations in the sediments of Changjiang River in Nanjing Reach was monitored for cadmium (Cd), lead (Pb), zinc (Zn), chromium (Cr), and copper (Cu). Moreover, the biological enrichment of metals by riverine plants was studied. The results demonstrated there were highly significant variations among different sampling stations for the concentrations of tested metals. The highest range was for Cu (38.8–120.4 mg kg−1), followed by Cr (74.4–120.0 mg kg−1), Zn (80.9–121.1 mg kg−1), Ni (26.0–55.5 mg kg−1), Pb (15.8–46.7 mg kg−1) and Cd (0.28–0.48 mg kg−1). Cd was the element with highest biological enrichment factor (BEF). The highest BEF of Cd in Erigeron bonariensis reached 3.0, indicating a significant Cd enrichment in this aquatic plant. In addition, 60% of Cd was found in reducible fraction and exchangeable and acid-soluble fraction, which was consistent with its high mobility. The consistency of Cd fraction in sediment and suspended particle indicated they came from the same source. Accumulated Cd concentration calculated according to the release curve showed significant relativity with the total Cd concentration in the sediment.  相似文献   

9.
In a typical modern agricultural Zone of southeastern China, Haining City, 224 topsoil samples were collected from paddy fields to measure the total concentrations of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg), arsenic (As) and cobalt (Co). The total concentrations ranged from 15.30 to 78.40 mg kg−1 for Cu, 20.10 to 41.40 mg kg−1 for Pb, 54.98 to 224.4 mg kg−1 for Zn, 0.04 to 0.24 mg kg−1 for Cd, 54.90 to 197.1 mg kg−1 for Cr, 0.03 to 0.61 mg kg−1 for Hg, 3.44 to 15.28 mg kg−1 for As, and 7.17 to 19.00 mg kg−1 for Co. Chemometric techniques and geostatistics were utilized to quantify their spatial characteristics and define their possible sources. All eight metals had a moderate spatial dependency except that Pb had a strong spatial dependency. Both factor analysis and cluster analysis successfully classified the eight metals into three groups or subgroups, the first group included Cu, Zn and Cr, the second group included Cd, As and Co, and the last group included Pb and Hg. The Cu, Zn and Cr concentrations in majority samples were higher than their local background concentrations and they were highly correlated (r > 0.80), indicating that they had similar pollution source and anthropic factor controlled their spatial distribution; the Cd, As and Co concentrations in majority samples were lower than their local background concentrations, indicating that the source of these elements was mainly controlled by natural factors; the mean concentration of Pb exhibited generally low level, close to its local background concentration, the Hg concentration in about half of samples was higher than its local background concentration, and they were poor correlated with the other metals, indicating that the source of Pb and Hg was common controlled by natural factor and anthropic factor.  相似文献   

10.
2 study area was assessed with respect to its heavy-metal load on the basis of the current guideline values. The heavy-metal loads of the soils in the study area have ranges of <0.2–200 mg kg−1 for Cd, <10–30,000 mg kg−1 for Pb, 7–10,000 mg kg−1 for Cu and 50–55,000 mg kg−1 for Zn. Mobility of the heavy metals was determined by extraction at different pH values. The acid neutralisation capacity (ANCx) at these pH values was also determined to estimate the probability that the pH can drop to pH=x. The ANC values in the study area ranged from 6 to 3000 mmol H+ kg−1, from −33 to 800 mmol H+ kg−1 and from −74 to 160 mmol H+ kg−1 for ANC3.5, ANC5.0 and ANC6.2, respectively. Together with pedological data, the extraction experiments permit differentiation between soil units that have been placed in the same environmental hazard class on the basis of total heavy-metal loads. Received: 10 August 1998 · Accepted: 14 August 1999  相似文献   

11.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

12.
This study examines the removal of dissolved metals during the oxidation and neutralization of five acid mine drainage (AMD) waters from La Zarza, Lomero, Esperanza, Corta Atalaya and Poderosa mines (Iberian Pyrite Belt, Huelva, Spain). These waters were selected to cover the spectrum of pH (2.2–3.5) and chemical composition (e.g., 319–2,103 mg/L Fe; 2.85–33.3 g/L SO4=) of the IPB mine waters. The experiments were conducted in the laboratory to simulate the geochemical evolution previously recognized in the field. This evolution includes two stages: (1) oxidation of dissolved Fe(II) followed by hydrolysis and precipitation of Fe(III), and (2) progressive pH increase during mixing with fresh waters. Fe(III) precipitates at pH < 3.5 (stages 1 and 2) in the form of schwertmannite, whereas Al precipitates during stage 2 at pH 5.0 in the form of several hydroxysulphates of variable composition (hydrobasaluminite, basaluminite, aluminite). During these stages, trace elements are totally or partially sorbed and/or coprecipitated at different rates depending basically on pH, as well as on the activity of the SO4= anion (which determines the speciation of metals). The general trend for the metals which are chiefly present as aqueous free cations (Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, Co2+, Ni2+) is a progressive sorption at increasing pH. On the other hand, As and V (mainly present as anionic species) are completely scavenged during the oxidation stage at pH < 3.5. In waters with high activities (> 10−1) of the SO 4= ion, some elements like Al, Zn, Cd, Pb and U can also form anionic bisulphate complexes and be significantly sorbed at pH < 5. The removal rates at pH 7.0 range from around 100% for As, V, Cu and U, and 60–80% for Pb, to less than 20% for Zn, Co, Ni and Mn. These processes of metal removal represent a significant mechanism of natural attenuation in the IPB.  相似文献   

13.
Mercury (Hg) is one of the elements with increasing environmental significance. A total of 22 samples (soils, rocks and gels) were collected along a 6 km transect around the Valdeazogues River valley in the southwest of the Iberian Peninsula (Almadén, Spain). Samples were characterized by different soil types of depositional sequences associated with mining tailings, type and system tracts: 15 surface soil samples included in the transect; 3 of a Haploxerept soil profile developed on slates; 2 of quartzite and slates rocks (reference rocks in the area). Moreover, two of a gel substance (in the lower tract of the river). Soil samples were analyzed for Hg, Cu, Ni, Cr, V, Pb, Cd and As, as well as for organic matter, pH abrasion and calcium carbonate content. All samples were collected from the Almadén mining district. The level of occurrence of the elements (especially Hg) and the effect of some properties on its concentration distributions were investigated. The total mercury contents varied in the range 7,315–3.44 mg kg−1. The mean concentration of total mercury in soils and rocks was 477.03 mg kg−1dry mass. This value is very high compared to the regional background value of other areas. Only rarely is it higher than 1%: in one sample (7,315 mg kg−1) it was almost eight times in comparison with the affected zones, with a high value of 1,000 mg kg−1. Significant differences between samples were found in the total content of mercury. A large percentage of the samples registered detectable levels of V, Cr, Ni, Pb, As and Cu. Cd readings were below the detectable range for all samples tested. Cr mean concentration was 216.95 mg kg−1 (minimun concentration 86, maximun 358); V mean concentration was 119.09 mg kg−1 (minimun concentration 69, maximun 1,209); As mean concentration was 51.24 mg kg−1 (minimun 13.3 and maximun 319.4); Ni mean concentration was 45.64 mg kg−1 (minimun concentration 21.2 and maximun 125.6); Cu mean concentration was 33.25 mg kg−1 (minimun concentration 19.3 and maximun 135); Pb mean concentration was 15.19 mg kg−1 (minimun 1.12 and maximun 1013). Metal distribution generally showed spatial variability ascribed to significant anthropogenic perturbation by mining tailing type. Hg showed vertical profile characterized by surface enrichment, with concentrations in the upper layer (93.7–82.2 mg kg−1 in front of 3.4 of the rock value) exceeding, in several occasions, the background value. The results obtained denote a potential toxicity of some heavy metals in some of the studied samples. Water-soluble mercury could enter the aquatic system and accumulate in sediments. Mercury and other heavy metals contamination depended on the duration and intensity of mining activities.  相似文献   

14.
Detailed magnetic and geochemical measurements were performed on urban roadside soils collected from Lishui city, China, to establish a possible link between the enhanced concentration of traffic-related magnetic particles and heavy metals. Relatively higher magnetic susceptibility (mean: 124.1 × 10−8 m3 kg−1) and concentrations of metals (Cd, Cu, Pb and Zn) were observed for roadside soils. Concentration-dependent magnetic parameters (χ and SIRM) are highly significantly positively correlated to the concentration of metals (Ca, Cr, Ni, Cu, Zn, Cd, Pb, Fe, and V), but not significantly correlated with As, Mn, Co, Mg, and K. The principal component analysis showed that χ and SIRM significantly correspond to elements Ca, Cd, Cu, Pb, and Zn. The χ and SIRM also have significant linear correlation with integrated pollution index, indicating that χ and SIRM can be used as effective proxy indicators for the pollution of heavy metals. Magnetite in the pseudo-single-domain/multidomain (PSD/MD) grain size was identified as the dominant magnetic carrier by temperature-dependent measurements of saturation magnetization (Ms–T curve), XRD and hysteresis loops. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) analysis of the magnetic particles revealed the presence of large traffic-related angular-subangular, blocky, and spherical iron oxide particles. These iron oxide particles are typical for particles produced by traffic-related anthropogenic activities. It is concluded that vehicle emissions may be the major source of elevated heavy metals and magnetic particles in roadside soils. The results proved the applicability of magnetic method in detecting roadside pollution derived from vehicle emissions.  相似文献   

15.
Cd, Pb, Cu and Zn were measured in vegetables in Xiguadi village around Lechang Pb/Zn mine in Guangdong province, South China. The daily intake (DI) of these metals from vegetables by local people was also determined. The respective Cd, Pb, Cu and Zn concentration was 0.05–0.90 (mean 0.25), 1.04–5.82 (2.64), 0.53–7.07 (2.00) and 3.87–25.20 (11.68) mg kg−1, of which Cd concentration in all vegetables exceeded the safe limit given by FAO/WHO. The DI was found to be 49.76, 475.56, 360.36 and 2,102.63 μg, respectively. The present results indicated local mining activity caused vegetable heavy metal contamination and Cd concentration exceeding the stipulated standards for all vegetables indicating potentially serious dietary risks for local people.  相似文献   

16.
This study investigated physico-chemical characteristics of the water column and chemistry of suspended particulate material (SPM) under quiescent, high-wind and high-wind/heavy-rainfall conditions in Homebush Bay, a highly contaminated embayment of Port Jackson (Australia) to distinguish source and possible adverse effects to benthic and pelagic animals. Mean concentrations in surficial sediment were <1, 14, 181, 141, 37, 290 and 685 μg g−1 for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. Sediment chemistry indicated these metals had multiple sources, i.e. the estuary, stormwater and industry. Mean total suspended solids (TSS) were 7, 17 and 20 mg L−1 during quiescent, high-rainfall and heavy rainfall/high wind conditions, respectively, whereas SPM Cd, Co, Cr, Cu, Ni, Pb and Zn concentrations varied between 13–25, 166–259, 127–198, 38–82, 236–305 and 605–865 μg g−1, respectively under these conditions. TSS and total water metal concentrations were lowest during quiescent conditions. High TSS and metal loads in surface water characterised high-rainfall events. Wind-induced resuspension contributed the greatest mass of SPM and metals to the water column. Benthic animals may be adversely affected by Pb and Zn in sediment. Total water Cu and Zn concentrations may pose a risk to filter-feeding animals in the water column due to resuspension of contaminated sediment.  相似文献   

17.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

18.
Two pyritic tailings impoundments located in two mining areas of the Iberian Pyrite Belt (Cueva de la Mora and Minas de Ríotinto-Zarandas) were selected to asses their potential environmental impact. Mineralogical (XRD diffraction study), physico-chemical characterization (colour, particle size, pH, acid–base account, total Fe, As, Cu, Pb and Zn) as well as a speciation study (by means of a seven-step sequential extraction procedure) were performed in superficial (0–20 cm) tailings samples. Arsenic and metal contents in soils around the tailings impoundments were also studied. Zarandas dam, a reclaimed impoundment, which has been limed, partially topsoiled and planted, has supported and allowed the growth of pine trees and other plants for many years. The surface of this impoundment can be considered very acid but nonacid forming. Although total As and metal concentrations were relatively high, it is not possible to conclude that the Zarandas tailings have polluted the surrounding soils. Tailings in Cueva de la Mora showed high total and easily mobilizable concentration of toxic elements. The net neutralization potential was strongly negative as a consequence of the acid generation caused by the sulphide oxidation, the presence of secondary acid-generating minerals and the absence of neutralizing materials. Coquimbite and rhomboclase efflorescences formed during the Mediterranean dry summers on the surface of this impoundment contained very high levels of soluble As, Cu and Zn that were easily dissolved and released to the running water in the first rains of autumn.  相似文献   

19.
The complex geochemical interactions in the groundwater of the industrial area of Šalek Valley (Slovenia) between natural and anthropogenic fluids were studied by means of major (Ca, Mg, Na, K, HCO3 , Cl and SO4 2−) and trace elements’ (As , Cd, Cu, Pb, Zn, Hg, Se and V) abundances, geochemical classification and statistical analysis of data. Cation abundances indicate mixing between a dolomitic end-member and an evaporitic or geothermal end-member. Anion abundances indicate mixing between bicarbonate waters and either sulphate-enriched waters (suggesting hydrothermalism) or chlorine-rich waters. Principal component analysis (PCA) allowed the extraction of seven factors, which describe, respectively: water–rock interaction mainly on dolomitic rocks; redox conditions of water; Cd–Zn enrichment in chlorine-rich waters (probably from industrial wastes); hydrothermal conditions in waters close to major faults; Pb and Cu pollution; V and K enrichments, indicating their common organic source; the role of partial pressure of CO2 dissolved in water, which is highest in three wells with bubbling gases. Average underground discharge rates of solutes from the Valley range between 0.09 t/a (V) and 1.8 × 104 t/a (HCO3 ) and indicate how natural fluids can significantly contribute to the levels of elements in the environment, in addition to the amount of elements released by human activities.  相似文献   

20.
An investigation was carried out to survey the magnitude and spatial distribution of heavy metals, as well as their relation with soil series, in a valley plain in Southeastern China. Soil was sampled at 159 sites by combining a squared grid and nested sampling strategies along the transect perpendicular to the Qujiang River in Zhejiang Province, China. Total concentrations of six metals, namely Cu, Fe, Mn, Ni, Pb and Zn, were measured. Classical statistics and geostatistics were used to quantify their spatial characteristics. There was a considerable variation in many of these parameters. The total concentrations ranged from 6.8 to 29.3 mg kg−1 for Cu, 6,784 to 18,678 mg kg−1 for Fe, 94 to 385 mg kg−1 for Mn, 6.1 to 20.3 mg kg−1 for Ni, 25.0 to 49.5 mg kg−1 for Pb, and 12 to 160 mg kg−1 for Zn. Pearson correlation coefficients among total metal concentrations and selected soil properties showed a number of strong associations. By virtue of analysis of variance, a predominant influence of soil series on the spatial variability of metal concentrations was observed. All metals were spatially correlated. The semivariograms of Cu, Fe, Mn, Ni and Zn were dominated by short range correlation (600 or 700 m), and that of Pb by long range (1200 m). Block kriging maps of total metal concentrations and soil properties showed strip distributions, perpendicular to the river, in the manner similar to the soil series. Principal component analysis was run to identify common distribution patterns of heavy metals and soil properties. These results illustrate that soil series information of valley plain may be useful for developing management zones for site-specific agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号