首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Fe3+/Fetot of all Fe-bearing minerals has been analysed by Mössbauer spectroscopy in a suite of biotite-rich to biotite-free graphitic metapelite xenoliths, proxies of an amphibolite-granulite transition through progressive biotite melting. Biotite contains 9 to 16% Fe3+/Fetot, whereas garnet, cordierite and ilmenite are virtually Fe3+ -free (0–1% Fe3+/Fetot) in all samples, regardless of biotite presence. Under relatively reducing conditions (graphite-bearing assemblages), biotite is the only carrier of Fe3+ during high-temperature metamorphism; therefore, its disappearance by melting represents an important event of iron reduction during granulite formation, because haplogranitic melts usually incorporate small amounts of ferric iron. Iron reduction is accompanied by the oxidation of carbon and the production of CO2, according to the redox reaction:
Depending on the nature of the peritectic Fe-Mg mineral produced (garnet, cordierite, orthopyroxene), the CO2 can either be present as a free fluid component, or be completely stored within melt and cordierite. The oxidation of graphite by iron reduction can account for the in situ generation of CO2, implying a consequential rather than causal role of CO2 in some granulites and migmatites. This genetic model is relevant to graphitic rocks more generally and may explain why CO2 is present in some granulites although it is not required for their formation.  相似文献   

2.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

3.
Pyrrhotite (Fe7S8) is a natural iron sulphide that can participate in rock magnetisation. Its electronic structure is not yet surely described. X-ray magnetic circular dichroism (XMCD) at Fe L2,3 edges on Fe7S8, coupled with multiplet calculations, shows that iron is present only as Fe2+ in this magnetic iron sulphide. It reveals a strong magnetic orbital moment. XMCD at Fe and S K edges shows the quite strong polarization of both Fe and S in Fe7S8.  相似文献   

4.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

5.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

6.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

7.
The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9 at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after the reversible phase transition despite an anisotropic contraction of the unit cell and a volume decrease of 4.2%. The crystal structure of the high pressure phase, β-Pb6Bi2S9, is solved in Pna2 1 (a = 25.302(7) Å, b = 30.819(9) Å, c = 4.0640(13) Å, Z = 8) from synchrotron data at 5.06 GPa. This structure consists of two types of moduli with SnS/TlI-archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).  相似文献   

8.
Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1–0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064–1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0–7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm-R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [d, Å, (I in 5-number scale)(hkl)] are 3.28 (5) (20\(\bar 2\)); 2.88 (5) (11\(\bar 2\)); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42\(\bar 2\)); 1.633 (5) (31\(\bar 4\)); 1.446 (4) (33\(\bar 2\)); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V 1.70 3+ Cr0.30)2.0(V 0.59 4+ Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

9.
It is shown the possibility to determine the coordination of paramagnetic ions in disordered solid structures, e.g., in barium borate glasses. For this purpose the electron paramagnetic resonance (EPR) method was used to study α-and β-BaB2O4 crystals and glasses of 45·BaO × 55·B2O3 and 40·BaO × 60·B2O3 (mol%) composition activated by Ag+ and Pb2+ ions. After the samples were exposed to X-rays at 77 K, different EPR centers were observed in them. In α-and β-BaB2O4 crystals and glasses the EPR centers Ag2+, Ag0, Pb+, Pb3+, and hole centers of O type were studied. The EPR parameters of these centers and their arrangement in crystal structure were determined. It is shown that Pb3+ ions in β-BaB2O4 crystals occupy Ba2+ position in an irregular polyhedron from the eight oxygen, whereas in α-BaB2O4 crystals they occupy Bа2 position in a sixfold coordination. Pb+ ions in α-BaB2O4 crystals occupy Bа1 position in a ninefold coordination from oxygen. In barium borate glasses, Pb3+ ions were studied in coordination polyhedron from six oxygen atoms and in a polyhedron from nine to ten oxygen atoms. It is assumed that the established difference in the structural position of Pb3+ ions in glasses is due to their previous incorporation in associative cation–anion complexes (AC) and “free” structure-forming cations (FC). Computer simulations have been performed to analyze the stability of specific associative complexes and to compare their bond lengths with experimental data.  相似文献   

10.
The segregation of ten isovalent impurities (Al3+ Cr3+, Eu3+, Gd3+, Ho3+, La3+, Lu3+, Nd3+, Tb3+, Y3+) to the and the (0001) surfaces of haematite (-Fe2O3) have been studied using atomistic simulation where the forces between the atoms are modelled using the Born model of solids. Segregation is found to be energetically favoured in virtually every case. The results for the surface show that the most favourable impurity surface concentration is 33.33%. The (0001) surface has two possible terminations, one terminated by iron atoms and the other by oxygen. No minimum is calculated for the Fe termination of the (0001) surface at low temperatures, but when the effect of raising the temperature is considered, an energy minimum is found, also at 33.33% impurity coverage. In contrast, the O terminated (0001) surface has a minimum in the segregation energy for between 16.67 and 33.33% depending on the cation being considered.  相似文献   

11.
The intra-crystalline cation partitioning over T- and M-sites in a synthetic Mg(Fe,Al)2O4 spinel sample has been determined as a function of temperature by Rietveld structure refinements from powder diffraction data, combining in situ high-temperature neutron powder diffraction (NPD; POLARIS diffractometer, at ISIS, Rutherford Appleton Laboratory, UK), to determine the Mg and Al occupancy factors, with in situ high-temperature X-ray powder diffraction, to fix the Fe3+ distribution. The results obtained agree with a two-stage reaction, in which an initial exchange between Fe3+ and Mg, the former leaving and the latter entering tetrahedral sites, is successively followed by a rearrangement involving also Al. The measured cation distribution has then been compared and discussed with that calculated by the Maximum Configuration Entropy principle, for which only NPD patterns have been used. The cation partitioning has finally been interpreted in the light of the configuration model of O’Neill and Navrotsky.  相似文献   

12.
The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency of the Ti–O chemical bonds.  相似文献   

13.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   

14.
KAlSi3O8 sanidine dissociates into a mixture of K2Si4O9 wadeite, Al2SiO5 kyanite and SiO2 coesite, which further recombine into KAlSi3O8 hollandite with increasing pressure. Enthalpies of KAlSi3O8 sanidine and hollandite, K2Si4O9 wadeite and Al2SiO5 kyanite were measured by high-temperature solution calorimetry. Using the data, enthalpies of transitions at 298 K were obtained as 65.1 ± 7.4 kJ mol–1 for sanidine wadeite + kyanite + coesite and 99.3 ± 3.6 kJ mol–1 for wadeite + kyanite + coesite hollandite. The isobaric heat capacity of KAlSi3O8 hollandite was measured at 160–700 K by differential scanning calorimetry, and was also calculated using the Kieffer model. Combination of both the results yielded a heat-capacity equation of KAlSi3O8 hollandite above 298 K as Cp=3.896 × 102–1.823 × 103T–0.5–1.293 × 107T–2+1.631 × 109T–3 (Cp in J mol–1 K–1, T in K). The equilibrium transition boundaries were calculated using these new data on the transition enthalpies and heat capacity. The calculated transition boundaries are in general agreement with the phase relations experimentally determined previously. The calculated boundary for wadeite + kyanite + coesite hollandite intersects with the coesite–stishovite transition boundary, resulting in a stability field of the assemblage of wadeite + kyanite + stishovite below about 1273 K at about 8 GPa. Some phase–equilibrium experiments in the present study confirmed that sanidine transforms directly to wadeite + kyanite + coesite at 1373 K at about 6.3 GPa, without an intervening stability field of KAlSiO4 kalsilite + coesite which was previously suggested. The transition boundaries in KAlSi3O8 determined in this study put some constraints on the stability range of KAlSi3O8 hollandite in the mantle and that of sanidine inclusions in kimberlitic diamonds.  相似文献   

15.
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join.  相似文献   

16.
Mn2+Sb2S4, a monoclinic dimorph of clerite, and benavidesite (Mn2+Pb4Sb6S14) show well-individualized single chains of manganese atoms in octahedral coordination. Their magnetic structures are presented and compared with those of iron derivatives, berthierite (Fe2+Sb2S4) and jamesonite (Fe2+Pb4Sb6S14). Within chains, interactions are antiferromagnetic. Like berthierite, MnSb2S4 shows a spiral magnetic structure with an incommensurate 1D propagation vector [0, 0.369, 0], unchanged with temperature. In berthierite, the interactions between identical chains are antiferromagnetic, whereas in MnSb2S4 interactions between chains are ferromagnetic along c-axis. Below 6 K, jamesonite and benavidesite have commensurate magnetic structures with the same propagation vector [0.5, 0, 0]: jamesonite is a canted ferromagnet and iron magnetic moments are mainly oriented along the a-axis, whereas for benavidesite, no angle of canting is detected, and manganese magnetic moments are oriented along b-axis. Below 30 K, for both compounds, one-dimensional magnetic ordering or correlations are visible in the neutron diagrams and persist down to 1.4 K.  相似文献   

17.
The crystal structure of a new compound, (H3O)[(UO2)(SeO4)(SeO2OH)] (monoclinic, P21/n, a = 8.6682(19), b = 10.6545(16), c = 9.846(2) Å, β = 97.881(17)°, V = 900.7(3) Å3), was solved by direct methods and refined to R 1 = 0.050. The structure contains two symmetrically different Se atoms. The Se1 site is coordinated by three O atoms as is characteristic of Se4+ cations. The Se2 site is coordinated by four O atoms and forms selenate anion SeO 4 2? . The structure is based on selenite-selenate sheets [(UO2)(SeO4)(SeO2OH)]? linked by the interlayer H3O? ions. The sheets are parallel to (101). The structure is compared to that of schmiederite, Pb2Cu2(SeO3)(SeO4)(OH)4.  相似文献   

18.
High-precision unit-cell volume data of stibnite, collected in the pressure range of 0–10 GPa, was used for fitting a third-order Birch–Murnaghan equation of state. The zero-pressure volume, bulk modulus and its pressure derivative were found to be 487.73(6) Å3, 26.91(14) GPa and 7.9(1), respectively. A series of X-ray intensity data was collected in the same pressure range using a CCD-equipped Bruker diffractometer. The high-pressure structures were all refined to R1(|F0|>4) values of approximately 0.03. Crystal-chemical parameters as polyhedron volume, centroid and eccentricity were calculated for the seven coordinated cation positions using the software IVTON. The cation eccentricity appears to be a very useful tool for quantification of the lone electron pair activity. U2S3, Dy2S3 and Nd2Te3 are all isostructural with stibnite, but the cations in these materials have no lone electron pair. Their eccentricity is much smaller than that of Sb, and close to zero. This confirms that the stibnite structure type alone does not force eccentricity upon the cations involved and it is the lone electron pairs of Sb that generate the eccentricity of cation positions in the structures of stibnite. At increasing pressure the eccentricity of Sb is decreasing. It is therefore reasonable to conclude that the lone electron pair activity is decreasing with increasing pressure.  相似文献   

19.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

20.
 Cation tracer diffusion coefficients, DMe *, for Me=Fe, Mn, Co and Ti, were measured using radioactive isotopes in the spinel solid solution (Ti x Fe 1−x )3−δO4 as a function of the oxygen activity. Experiments were performed at different cationic compositions (x=0, 0.1, 0.2 and 0.3) at 1100, 1200, 1300 and 1400 °C. The oxygen activity dependence of all data for DMe * at constant temperature and cationic composition can be described by equations of the type DMe *=D Me[V]. CV·a O2 2/3+DMe[I] ·a O2 −2/3·DMe[V] and DMe[I] are constants and CV is a factor of the order of unity which decreases with increasing δ. All log DMe * vs. loga O2 curves obtained for different values of x and for different temperatures go through a minimum due to a change in the type of point defects dominating the cation diffusion with oxygen activity. Cation vacancies prevail for the cation diffusion at high oxygen activities while cation interstitials become dominant at low oxygen activities. At constant values of x, DMe[V] decreases with increasing temperature while DMe[I] increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号