首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   

2.
A statistical downscaling method (SDSM) was evaluated by simultaneously downscaling air temperature, evaporation, and precipitation in Haihe River basin, China. The data used for evaluation were large-scale atmospheric data encompassing daily NCEP/NCAR reanalysis data and the daily mean climate model results for scenarios A2 and B2 of the HadCM3 model. Selected as climate variables for downscaling were measured daily mean air temperature, pan evaporation, and precipitation data (1961–2000) from 11 weather stations in the Haihe River basin. The results obtained from SDSM showed that: (1) the pattern of change in and numerical values of the climate variables can be reasonably simulated, with the coefficients of determination between observed and downscaled mean temperature, pan evaporation, and precipitation being 99%, 93%, and 73%, respectively; (2) systematic errors existed in simulating extreme events, but the results were acceptable for practical applications; and (3) the mean air temperature would increase by about 0.7°C during 2011~2040; the total annual precipitation would decrease by about 7% in A2 scenario but increase by about 4% in B2 scenario; and there were no apparent changes in pan evaporation. It was concluded that in the next 30 years, climate would be warmer and drier, extreme events could be more intense, and autumn might be the most distinct season among all the changes.  相似文献   

3.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   

4.
This study aims to evaluate the performance of two mainstream downscaling techniques: statistical and dynamical downscaling and to compare the differences in their projection of future climate change and the resultant impact on wheat crop yields for three locations across New South Wales, Australia. Bureau of Meteorology statistically- and CSIRO dynamically-downscaled climate, derived or driven by the CSIRO Mk 3.5 coupled general circulation model, were firstly evaluated against observed climate data for the period 1980–1999. Future climate projections derived from the two downscaling approaches for the period centred on 2055 were then compared. A stochastic weather generator, LARS-WG, was used in this study to derive monthly climate changes and to construct climate change scenarios. The Agricultural Production System sIMulator-Wheat model was then combined with the constructed climate change scenarios to quantify the impact of climate change on wheat grain yield. Statistical results show that (1) in terms of reproducing the past climate, statistical downscaling performed better over dynamical downscaling in most of the cases including climate variables, their mean, variance and distribution, and study locations, (2) there is significant difference between the two downscaling techniques in projected future climate change except the mean value of rainfall across the three locations for most of the months; and (3) there is significant difference in projected wheat grain yields between the two downscaling techniques at two of the three locations.  相似文献   

5.
Backcasting long-term climate data: evaluation of hypothesis   总被引:1,自引:0,他引:1  
Most often than not, incomplete datasets or short-term recorded data in vast regions impedes reliable climate and water studies. Various methods, such as simple correlation with stations having long-term time series, are practiced to infill or extend the period of observation at stations with missing or short-term data. In the current paper and for the first time, the hypothesis on the feasibility of extending the downscaling concept to backcast local observation records using large-scale atmospheric predictors is examined. Backcasting is coined here to contrast forecasting/projection; the former is implied to reconstruct in the past, while the latter represents projection in the future. To assess our hypotheses, daily and monthly statistical downscaling models were employed to reconstruct past precipitation data and lengthen the data period. Urmia and Tabriz synoptic stations, located in northwestern Iran, constituted two case study stations. SDSM and data-mining downscaling model (DMDM) daily as well as the group method of data handling (GMDH) and model tree (Mp5) monthly downscaling models were trained with National Center for Environmental Prediction (NCEP) data. After training, reconstructed precipitation data of the past was validated against observed data. Then, the data was fully extended to the 1948 to 2009 period corresponding to available NCEP data period. The results showed that DMDM performed superior in generation of monthly average precipitation compared with the SDSM, Mp5, and GMDH models, although none of the models could preserve the monthly variance. This overall confirms practical value of the proposed approach in extension of the past historic data, particularly for long-term climatological and water budget studies.  相似文献   

6.
基于统计降尺度模型的江淮流域极端气候的模拟与预估   总被引:4,自引:0,他引:4  
利用江淮流域29个代表站点1961--2000年逐日最高温度、最低温度和逐日降水资料,以及NCEP逐日大尺度环流场资料,引入基于多元线性回归与随机天气发生器相结合的统计降尺度模型SDSM(statistical downscalingmodel),通过对每个站点建模,确立SDSM参数,并将该模型应用于SRESA2排放情景下HadCM3和cGcM3模式,得到了江淮流域各代表台站21世纪的逐日最高、最低温度和降水序列以及热浪、霜冻、强降水等极端气候指数。结果表明,当前气候下,统计降尺度方法模拟的极端温度指数与观测值有很好的一致性,能有效纠正耦合模式的“冷偏差”,如SDSM对江淮平均的冬季最高、最低温度的模拟偏差较CGCM3模式分别减少3℃和4.5℃。对于极端降水则能显著纠正耦合模式模拟的降水强度偏低的问题,如CGCM3对江淮流域夏季降水强度的模拟偏差为-60.6%,但降尺度后SDSM—CGCM3的偏差仅为-6%,说明降尺度模型SDSM的确有“增加值”的作用。21世纪末期在未来SRESA2情景下,对于极端温度,无论Had.CM3还是CGCM3模式驱动统计模型,江淮流域所有代表台站,各个季节的最高、最低温度都显著增加,且以夏季最为显著,增幅在2—4℃;与之相应霜冻天数将大幅减少,热浪天数大幅增多,各站点冬季霜冻天数减少幅度为5—25d,夏季热浪天数增加幅度为4~14d;对于极端降水指数,在两个不同耦合模式HadCM3和CGCM3驱动下的变化尤其是变化幅度的一致性比温度差,但大部分站点各个季节极端强降水事件将增多,强度增强,SDSM—HadCM3和SDSM-CGCM3预估的夏季极端降水贡献率将分别增加26%和27%。  相似文献   

7.
Assessing future climate and its potential implications on river flows is a key challenge facing water resource planners. Sound, scientifically-based advice to decision makers also needs to incorporate information on the uncertainty in the results. Moreover, existing bias in the reproduction of the ‘current’ (or baseline) river flow regime is likely to transfer to the simulations of flow in future time horizons, and it is thus critical to undertake baseline flow assessment while undertaking future impacts studies. This paper investigates the three main sources of uncertainty surrounding climate change impact studies on river flows: uncertainty in GCMs, in downscaling techniques and in hydrological modelling. The study looked at four British catchments’ flow series simulated by a lumped conceptual rainfall–runoff model with observed and GCM-derived rainfall series representative of the baseline time horizon (1961–1990). A block-resample technique was used to assess climate variability, either from observed records (natural variability) or reproduced by GCMs. Variations in mean monthly flows due to hydrological model uncertainty from different model structures or model parameters were also evaluated. Three GCMs (HadCM3, CCGCM2, and CSIRO-mk2) and two downscaling techniques (SDSM and HadRM3) were considered. Results showed that for all four catchments, GCM uncertainty is generally larger than downscaling uncertainty, and both are consistently greater than uncertainty from hydrological modelling or natural variability. No GCM or downscaling technique was found to be significantly better or to have a systematic bias smaller than the others. This highlights the need to consider more than one GCM and downscaling technique in impact studies, and to assess the bias they introduce when modelling river flows.  相似文献   

8.
Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2–4 day), and long (more than 5-day) precipitation events is projected.  相似文献   

9.
This paper addresses deficiencies of stochastic Weather Generators (WGs) in terms of reproduction of low-frequency variability and extremes, as well as the unanticipated effects of changes to precipitation occurrence under climate change scenarios on secondary variables. A new weather generator (named IWG) is developed in order to resolve such deficiencies and improve WGs performance. The proposed WG is composed of three major components, including a stochastic rainfall model able to reproduce realistic rainfall series containing extremes and inter-annual monthly variability, a multivariate daily temperature model conditioned to the rainfall occurrence, and a suitable multi-variate monthly generator to fit the low-frequency variability of daily maximum and minimum temperature series. The performance of IWG was tested by comparing statistical characteristics of the simulated and observed weather data, and by comparing statistical characteristics of the simulated runoff outputs by a daily rainfall-runoff model fed by the generated and observed weather data. Furthermore, IWG outputs are compared with those of the well-known LARS-WG weather generator. The tested characteristics are a variety of different daily statistics, low-frequency variability, and distribution of extremes. It is concluded that the performance of the IWG is acceptable, better than LARS-WG in the majority of tests, especially in reproduction of extremes and low-frequency variability of weather and runoff series.  相似文献   

10.
Cambodia is one of the most vulnerable countries to climate change impacts such as floods and droughts. Study of future climate change and drought conditions in the upper Siem Reap River catchment is vital because this river plays a crucial role in maintaining the Angkor Temple Complex and livelihood of the local population since 12th century. The resolution of climate data from Global Circulation Models (GCM) is too coarse to employ effectively at the watershed scale, and therefore downscaling of the dataset is required. Artificial neural network (ANN) and Statistical Downscaling Model (SDSM) models were applied in this study to downscale precipitation and temperatures from three Representative Concentration Pathways (RCP 2.6, RCP 4.5 and RCP 8.5 scenarios) from Global Climate Model data of the Canadian Earth System Model (CanESM2) on a daily and monthly basis. The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were adopted to develop criteria for dry and wet conditions in the catchment. Trend detection of climate parameters and drought indices were assessed using the Mann-Kendall test. It was observed that the ANN and SDSM models performed well in downscaling monthly precipitation and temperature, as well as daily temperature, but not daily precipitation. Every scenario indicated that there would be significant warming and decreasing precipitation which contribute to mild drought. The results of this study provide valuable information for decision makers since climate change may potentially impact future water supply of the Angkor Temple Complex (a World Heritage Site).  相似文献   

11.
Predictor selection is a critical factor affecting the statistical downscaling of daily precipitation. This study provides a general comparison between uncertainties in downscaled results from three commonly used predictor selection methods (correlation analysis, partial correlation analysis, and stepwise regression analysis). Uncertainty is analyzed by comparing statistical indices, including the mean, variance, and the distribution of monthly mean daily precipitation, wet spell length, and the number of wet days. The downscaled results are produced by the artificial neural network (ANN) statistical downscaling model and 50 years (1961–2010) of observed daily precipitation together with reanalysis predictors. Although results show little difference between downscaling methods, stepwise regression analysis is generally the best method for selecting predictors for the ANN statistical downscaling model of daily precipitation, followed by partial correlation analysis and then correlation analysis.  相似文献   

12.
This study evaluated the performance of three frequently applied statistical downscaling tools including SDSM, SVM, and LARS-WG, and their model-averaging ensembles under diverse moisture conditions with respect to the capability of reproducing the extremes as well as mean behaviors of precipitation. Daily observed precipitation and NCEP reanalysis data of 30 stations across China were collected for the period 1961–2000, and model parameters were calibrated for each season at individual site with 1961–1990 as the calibration period and 1991–2000 as the validation period. A flexible framework of multi-criteria model averaging was established in which model weights were optimized by the shuffled complex evolution algorithm. Model performance was compared for the optimal objective and nine more specific metrics. Results indicate that different downscaling methods can gain diverse usefulness and weakness in simulating various precipitation characteristics under different circumstances. SDSM showed more adaptability by acquiring better overall performance at a majority of the stations while LARS-WG revealed better accuracy in modeling most of the single metrics, especially extreme indices. SVM provided more usefulness under drier conditions, but it had less skill in capturing temporal patterns. Optimized model averaging, aiming at certain objective functions, can achieve a promising ensemble with increasing model complexity and computational cost. However, the variation of different methods' performances highlighted the tradeoff among different criteria, which compromised the ensemble forecast in terms of single metrics. As the superiority over single models cannot be guaranteed, model averaging technique should be used cautiously in precipitation downscaling.  相似文献   

13.

Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080–2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  相似文献   

14.
Three statistical downscaling methods are compared with regard to their ability to downscale summer (June–September) daily precipitation at a network of 14 stations over the Yellow River source region from the NCEP/NCAR reanalysis data with the aim of constructing high-resolution regional precipitation scenarios for impact studies. The methods used are the Statistical Downscaling Model (SDSM), the Generalized LInear Model for daily CLIMate (GLIMCLIM), and the non-homogeneous Hidden Markov Model (NHMM). The methods are compared in terms of several statistics including spatial dependence, wet- and dry spell length distributions and inter-annual variability. In comparison with other two models, NHMM shows better performance in reproducing the spatial correlation structure, inter-annual variability and magnitude of the observed precipitation. However, it shows difficulty in reproducing observed wet- and dry spell length distributions at some stations. SDSM and GLIMCLIM showed better performance in reproducing the temporal dependence than NHMM. These models are also applied to derive future scenarios for six precipitation indices for the period 2046–2065 using the predictors from two global climate models (GCMs; CGCM3 and ECHAM5) under the IPCC SRES A2, A1B and B1scenarios. There is a strong consensus among two GCMs, three downscaling methods and three emission scenarios in the precipitation change signal. Under the future climate scenarios considered, all parts of the study region would experience increases in rainfall totals and extremes that are statistically significant at most stations. The magnitude of the projected changes is more intense for the SDSM than for other two models, which indicates that climate projection based on results from only one downscaling method should be interpreted with caution. The increase in the magnitude of rainfall totals and extremes is also accompanied by an increase in their inter-annual variability.  相似文献   

15.
To address the demand for high spatial resolution gridded climate data, we have advanced the Daymet point-based interpolation algorithm for downscaling global, coarsely gridded data with additional output variables. The updated algorithm, High-Resolution Climate Downscaler (HRCD), performs very good downscaling of daily, global, historical reanalysis data from 1° input resolution to 2.5 arcmin output resolution for day length, downward longwave radiation, pressure, maximum and minimum temperature, and vapor pressure deficit. It gives good results for monthly and yearly cumulative precipitation and fair results for wind speed distributions and modeled downward shortwave radiation. Over complex terrain, 2.5 arcmin resolution is likely too low and aggregating it up to 15 arcmin preserves accuracy. HRCD performs comparably to existing daily and monthly US datasets but with a global extent for nine daily climate variables spanning 1948–2006. Furthermore, HRCD can readily be applied to other gridded climate datasets.  相似文献   

16.
哈萨克斯坦是世界最大的内陆国家,拥有典型的大陆性气候和多样的地理环境及生态系统,同时哈萨克斯坦的自然环境和人类社会对于气候变化这一全球性问题是敏感的、脆弱的,需要运用科学的研究方法应对气候变化的挑战。通常,区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。近年来,大量验证统计降尺度方法在各个地区能力的研究见诸文献,然而在哈萨克斯坦地区验证统计降尺度方法的研究非常少见。本文使用了岭回归的方法对哈萨克斯坦地区11个气象站点1960~2009年的月平均气温进行了统计降尺度研究。结果显示,使用前30年数据和岭回归模型建立大尺度预报因子和观测资料的统计关系可以较好地预测后20年的月平均气温,预测能力在各站各月均有不同程度的差异,地形复杂的站点预测效果较差,夏季预测结果好于冬季;此外,将哈萨克斯坦地区平均来看则与观测数据相吻合。  相似文献   

17.
The Xin'anjiang Model is used as the basic model to develop a monthly grid-based macroscalehydrological model for the assessment of the effects of climate change on water resources.Themonthly discharge from 1953 through 1985 in the Huaihe River Basin is simulated.The sensitivityanalysis on runoff is made under assumed climatic scenarios.There is a good agreement betweenthe observed and simulated runoff.Due to the increase of time interval and decrease ofprecipitation intensity on monthly time scale,there is no monthly runoff in some model girds as themomhly hydrological model is applied to the Huaihe River Basin.Two methods of downscalingmonthly precipitation to daily resolution are validated by running the Xin'anjiang model withmonthly data at a daily time step.and the model outputs are more realistic than the monthlyhydrological model.The metbods of downscaling of monthly precipitation to daily resolution mayprovide an idea in solving the problem of the shortage of daily data.In the research of the climatechange on water resources,the daily hydrological model can be used instead of the monthly one.  相似文献   

18.
The current study examines the recently proposed “bias correction and stochastic analogues” (BCSA) statistical spatial downscaling technique and attempts to improve it by conditioning coarse resolution data when generating replicates. While the BCSA method reproduces the statistical features of the observed fine data, this existing model does not replicate the observed coarse spatial pattern, and subsequently, the cross-correlation between the observed coarse data and downscaled fine data with the model cannot be preserved. To address the dissimilarity between the BCSA downscaled data and observed fine data, a new statistical spatial downscaling method, “conditional stochastic simulation with bias correction” (BCCS), which employs the conditional multivariate distribution and principal component analysis, is proposed. Gridded observed climate data of mean daily precipitation (mm/day) covering a month at 1/8° for a fine resolution and at 1° for a coarse resolution over Florida for the current and future periods were used to verify and cross-validate the proposed technique. The observed coarse and fine data cover the 50-year period from 1950 to1999, and the future RCP4.5 and RCP8.5 climate scenarios cover the 100-year period from 2000 to 2099. The verification and cross-validation results show that the proposed BCCS downscaling method serves as an effective alternative means of downscaling monthly precipitation levels to assess climate change effects on hydrological variables. The RCP4.5 and RCP8.5 GCM scenarios are successfully downscaled.  相似文献   

19.
X-C Zhang 《Climatic change》2007,84(3-4):337-363
Spatial downscaling of climate change scenarios can be a significant source of uncertainty in simulating climatic impacts on soil erosion, hydrology, and crop production. The objective of this study is to compare responses of simulated soil erosion, surface hydrology, and wheat and maize yields to two (implicit and explicit) spatial downscaling methods used to downscale the A2a, B2a, and GGa1 climate change scenarios projected by the Hadley Centre’s global climate model (HadCM3). The explicit method, in contrast to the implicit method, explicitly considers spatial differences of climate scenarios and variability during downscaling. Monthly projections of precipitation and temperature during 1950–2039 were used in the implicit and explicit spatial downscaling. A stochastic weather generator (CLIGEN) was then used to disaggregate monthly values to daily weather series following the spatial downscaling. The Water Erosion Prediction Project (WEPP) model was run for a wheat–wheat–maize rotation under conventional tillage at the 8.7 and 17.6% slopes in southern Loess Plateau of China. Both explicit and implicit methods projected general increases in annual precipitation and temperature during 2010–2039 at the Changwu station. However, relative climate changes downscaled by the explicit method, as compared to the implicit method, appeared more dynamic or variable. Consequently, the responses to climate change, simulated with the explicit method, seemed more dynamic and sensitive. For a 1% increase in precipitation, percent increases in average annual runoff (soil loss) were 3–6 (4–10) times greater with the explicit method than those with the implicit method. Differences in grain yield were also found between the two methods. These contrasting results between the two methods indicate that spatial downscaling of climate change scenarios can be a significant source of uncertainty, and further underscore the importance of proper spatial treatments of climate change scenarios, and especially climate variability, prior to impact simulation. The implicit method, which applies aggregated climate changes at the GCM grid scale directly to a target station, is more appropriate for simulating a first-order regional response of nature resources to climate change. But for the site-specific impact assessments, especially for entities that are heavily influenced by local conditions such as soil loss and crop yield, the explicit method must be used.  相似文献   

20.
Several studies have been devoted to dynamic and statistical downscaling for both climate variability and climate change. This paper introduces an application of temporal neural networks for downscaling global climate model output and autocorrelation functions. This method is proposed for downscaling daily precipitation time series for a region in the Amazon Basin. The downscaling models were developed and validated using IPCC AR4 model output and observed daily precipitation. In this paper, five AOGCMs for the twentieth century (20C3M; 1970–1999) and three SRES scenarios (A2, A1B, and B1) were used. The performance in downscaling of the temporal neural network was compared to that of an autocorrelation statistical downscaling model with emphasis on its ability to reproduce the observed climate variability and tendency for the period 1970–1999. The model test results indicate that the neural network model significantly outperforms the statistical models for the downscaling of daily precipitation variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号