首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Rare earth element (REE) and other trace element compositions of 16 lavas from all historic and 2 prehistoric eruptions on 5 islands of the Azores Archipelago show notable intra-and inter-island differences. Fe enrichment and “compatible” element depletion due to fractional crystallization have been superimposed on variations established in the source area. Fractionation of La/Sm, U/Th, K/Na and “large ion lithophile” (LIL) element abundances are probably related to variable fusion of a source peridotite whose LIL element distribution cannot be exactly specified in view of its possible heterogeneity. Relative light-REE enrichment in basalt appears greatest on the “potassic” island São Miguel, the more sodic island Fayal and one lava from Pico, and least in basalts from the “sodic” islands Terceira, São Jorge and Pico. This variation is matched by most other LIL elements, although P shows unexpected enrichment in Terceira lavas, otherwise the least LIL element-enriched and most heavy-REE-enriched. Upper mantle phase chemistry is probably critical in establishing the patterns. In particular, P—REE covariance may reflect phase stabilities of apatite and (P-bearing) garnet in the upper mantle. Distribution patterns of REE in the historic lavas are similar to those of basalts from the Atlantic median rift at the crest of the Azores “platform”. Transition to light-REE-depleted rift-erupted basalts to the southwest is believed to be step-wise with increasing water depth, possibly indicating retention of a light-REE-rich phase in the residue from partial fusion as intersection of geotherm and peridotite solidus occur at lower pressures. The source mantle for the Azores basalts is probably light-REE- and LIL element-enriched but we find no evidence so far to suggest its emplacement by thermal “plume” activity.  相似文献   

2.
Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin.When data for the “southern” Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of “within-plate” basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a “subduction component” has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities.In contrast, the data for “northern” Karoo basalts largely plot in the “within-plate” field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least some geochemical discriminant diagrams most unreliable for classifying tectonic environment with respect to continental volcanic rocks.  相似文献   

3.
Forty new K-Ar and 40Ar/39Ar isotopic ages from the northern Main Ethiopian Rift (MER)–southern Afar transition zone provide insights into the volcano-tectonic evolution of this portion of the East African Rift system. The earliest evidence of volcanic activity in this region is manifest as 24–23 Ma pre-rift flood basalts. Transition zone flood basalt activity renewed at approximately 10 Ma, and preceded the initiation of modern rift margin development. Bimodal basalt–rhyolite volcanism in the southern Afar rift floor began at approximately 7 Ma and continued into Recent times. In contrast, post-subsidence volcanic activity in the northern MER is dominated by Mio-Pliocene silicic products from centers now covered by Quaternary volcanic and sedimentary lithologies. Unlike other parts of the MER, Mio-Pliocene silicic volcanism in the MER–Afar transition zone is closely associated with fissural basaltic products. The presence of Pliocene age ignimbrites on the plateaus bounding the northern MER, whose sources are found in the present rift, indicates that subsidence of this region was gradual, and that it attained its present physiography with steep escarpments only in the Plio-Pleistocene. Large 7–5 Ma silicic centers along the southern Afar and northeastern MER margins apparently formed along an E–W-oriented regional structural feature parallel to the already established southern escarpment of the Afar. The Addis Ababa rift embayment and the growth of 4.5–3 Ma silicic centers in the Addis Ababa area are attributed to the formation of a major cross-rift structure and its intersection with the same regional E–W structural trend. This study illustrates the episodic nature of rift development and volcanic activity in the MER–Afar transition zone, and the link between this activity and regional structural and tectonic features.  相似文献   

4.
Two volcanic zones (Bukavu and Kamituga) south of Lake Kivu (southeastern Zaire) are part of the western branch of the Eastern African rift. They were formed during three volcanic cycles, one pre-rift (70-7 Ma old) and the other two syn-rift (7.8-1.9 Ma old and 14,000 y.-sub-Recent, respectively), and evolved from quartz tholeiites of the pre-rift period to alkali basalts of the rift stage. The basaltic rocks, which strongly predominate, are compositionally similar to other rift-related basalts and also to oceanic-island rocks. Most of the basalts have undergone only limited fractional crystallization (5–10%) dominated by olivine and clinopyroxene. The distinct variations of incompatible elements even in rocks of very similar major-element composition imply that the basaltic rocks were derived from a heterogeneous source by variable degrees of melting. The inferred source composition closely resembles that of metasomatized peridotite xenoliths from alkali basalts.  相似文献   

5.
The Upper Tertiary to Quaternary volcanic complex of Kouh-e-Shahsavaran in southeastern Iran is composed of calc-alkaline rocks of island are type (high-alumina basalts, basic andesites, andesites and dacites) even though it was emplaced on the continental basement. The volcanic rocks of the complex are genetically related and were probably derived by low-pressure fractional crystallization of high-Al basalts. The anomalously high content of Sr in some rocks probably reflects an accumulation of plagioclase. The trace element data are consistent with the origin of the parental magma by partial melting of an “enriched” upper mantle peridotite.  相似文献   

6.
Isotopic data for Sr and Nd from fresh glassy East Pacific Rise basalts suggest that this part of the suboceanic mantle is characterized by subtle but distinct large-scale regional isotopic variability which may reflect differences between cells of the convecting mantle. In spite of a systematic N—S change in spreading rate of a factor of three along the sampled portion of the EPR, no correlation is observed between spreading rate and range of isotopic composition, indicating that the regional variations override homogenization effects which may be correlated with rate of magma generation and hence spreading rate. There is no clear signature in our data of effects from the postulated global “Dupal Anomaly” [30,31]. However, for a restricted ridge segment at the latitude of Easter Island, anomalously high87Sr/86Sr and low143Nd/144Nd occur, coupled with high incompatible element concentrations. These features are most easily understood as being the result of inclusion of a “plume” component in these ridge basalts.  相似文献   

7.
The Taupo Volcanic Zone (TVZ) is a 200-km-long volcanic arc segment which developed ≤2 Ma ago within the continental crust of the North Island of New Zealand and lies at the southern end of the much larger Tonga-Kermadec arc system. The total crustal heat transfer of the TVZ is at present c. 2600 MW/100 km, most of the heat being transferred by convective geothermal systems. The rate of transfer is anomalously high in comparison to that of other active arcs, and arguably the highest world wide for such a setting. Heat transfer of other active arcs appear to vary almost linearly with subduction speed (about 150 MW/100 km for 10 mm/yr). The mass rate of common type arc extrusions (basalts, andesites, dacites) also increases almost linearly with subduction speed. This allows separation of the TVZ heat transfer into a “normal” component, associated with extrusions and intrusions of andesites and dacites (about 600 MW/100 km), and an “anomalous” component of about 2000 MW/100 km, related to extrusions and intrusions of rhyolitic melts whose generation is not directly controlled by subduction processes.Rhyolitic melts in the TVZ are partial melts of dominantly crustal origin. Comparison with other arcs indicates that the long-term extrusion rate of TVZ rhyolites (about 400 kg/s per 100 km) is also the highest world wide for this setting. The occurrence of voluminous Quaternary rhyolitic pyroclastics is a rare phenomenon and appears to be associated with a few arc segments (TVZ, Sumatra, Kyushu) that undergo significant crustal deformation.Various models have been proposed to explain the phenomenon of the anomalously high heat transfer within the TVZ. Models which require only heat transfer from plumes and subcrustal melts, either ponded at the crust/mantle boundary or intruding a spreading crust, are not suitable because the associated heat transfer at the contact is too low by a factor 2 to explain the required transfer rate of about 0.8 W/m2 representing the “anomalous” crustal heat component of the TVZ. Heat generation by focussed plastic deformation within the ductile lithosphere is an alternative mechanism to explain “endogenous crustal heating” which yields heating rates that are also too low by a factor of two, although important parameters (average yield strength of lithosphere and opening rate of the TVZ) are not well known. A further search for a suitable combination of heat source models is required.  相似文献   

8.
Orogenic lherzolites allow for almost “in-situ” observation of mantle isotopic heterogeneities on a restricted geographical scale, in contrast to basalts for which melting processes have averaged original mantle compositions over uncertain scales. Pb isotopes from whole rocks and clinopyroxenes from the massifs of Lherz (Pyrenees), Lanzo (Alps), Beni Bousera (Morocco) and Zabargad (Red Sea) show internal heterogeneities that encompass the entire range of variation observed in oceanic basalts. Some depleted lherzolites have a very unradiogenic composition similar to that of the most depleted ridge tholeiites. Pyroxenites from mafic layers generally have more radiogenic compositions, some of them comparable to the most radiogenic oceanic island results. The isotopic differences between lherzolites and pyroxenites vanish where layers are very closely spaced ( < 2 cm). In this case, the lherzolites may have equilibrated with the more Pb-rich pyroxenites through solid-state diffusion under mantle conditions. These results directly illustrate the smallest scales at which Pb isotopic heterogeneity may survive within the mantle.The genesis of these heterogeneities are discussed within the framework of the “marble cake” mantle model [1], where lherzolites are residues left over after oceanic crust extraction, whereas pyroxenites represent either basaltic or cumulate portions of the oceanic crust, reinjected by subduction and stretched by solid-state mixing during mantle convection. The Pb isotope data suggest that each massif was involved in several cycles of convective overturn, segregation and reinjection of the oceanic crust, during periods well over 1 Ga.If the upper mantle is made of interlayered radiogenic and unradiogenic layers, basalt heterogeneities may result from preferential melt-extraction from different layers depending on the degree of melting, as well as from large-scale, plume-related mantle heterogeneities. Orogenic lherzolites therefore allow direct observation of disseminated small-scale heterogeneities previously inferred from observations of oceanic basalts from seamounts and ridges.  相似文献   

9.
The erosional pattern of passive margins often follows the fabric of ancient, compressional geological structures exposed by the topographic energy of rifting. As erosion cuts into these belted outcrop systems they impose initial and boundary conditions that steer drainage recession into the plateau edge and control escarpment‐forming conditions. Pattern therefore controls process. Although generic surface process models predict scarp patterns and retreat in settings devoid of geological heterogeneity, they tend to do so only at isolated locations and for periods shorter than the lifespan of the escarpments. Thus, to focus on relatively narrow strike‐perpendicular swaths of passive margin topography misses important aspects of drainage integration, which involves mobile drainage basin boundaries shifting across but also along the strike of inherited geological structures and through continental‐scale bioclimatic zones. Space‐for‐time substitution along three passive margin escarpments (Blue Ridge, Western Ghats, Eastern Ghats) reveals the significance of escarpment jumps and the detachment of topographic outliers, here generically termed ‘buttes’, as key processes of escarpment evolution. The examples show that these continental escarpments are strongly patterned after pre‐rift structural and lithological heterogeneities. As seaward sloping drainages cut into the rift margin, they extend their drainage heads in a non‐uniform and unsteady fashion. As a result escarpments can form, be destroyed, reform, and leave topographic vestiges (buttes) of the retreating escarpment. Given the pre‐rift geological heterogeneities, there are no a priori reasons why escarpment landscape change should be uniform, steady or self‐similar. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The Serra Geral (Paraná) continental flood-basalt province of southern Brazil has two main basalt types: low-TiO2 ( 1 wt.%) basalts occupy the southern portion, and high-TiO2 (> 3 wt.%) basalts are largely in the northern part. Low-Ti basalts are less evolved (Mg# 60) and more radiogenic (e.g., 87Sr/86Sr 0.708) than high-Ti basalts (Mg# 35; 87Sr/86Sr 0.705). This is consistent with a model that invokes variable melting of a single mantle source to produce picritic magmas that have relatively lower and higher incompatible element contents. Varying percentages of melting can be related to varying proximity to the early Tristan da Cunha hotspot. The Mg-rich magmas fractionated 60–75% olivine, clinopyroxene, and plagioclase to yield low- or high-Ti flood basalts, assimilating more or less crust in the process. The extent of fractionation and assimilation depended on crustal “warmth” (also tied to location relative to hotspot): (1) above zones of 25% melting, warm crust relatively easily contaminated crystallizing picritic magma that originated by a high degree of melting (i.e., magma with lower incompatible element contents); additionally, high degrees of melting sustained replenishment of magma with low-Ti magma characteristics; (2) above 10% melting zones, cooler crust comparatively restricted assimilation during crystallization (of magma with higher incompatible element contents) and permitted magma evolution to high-Ti derivatives; lesser degrees of melting also limited replenishment magma and thereby allowed greater evolution of existing magma. This model refers all diagnostic geochemical and isotopic features of Serra Geral basalts to percentages of partial melting of an essentially homogeneous mantle material.  相似文献   

11.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

12.
A petrographic and geochemical study of 15 Early Jurassic and 7 Proterozoic dolerites of French Guyana, and of one Jurassic dolerite from Ivory-Coast were carried out. The Early Jurassic SSW-NNE trending dykes have doleritic aphyric or gabbroic phyric texture. Their chemical compositions, slightly under-saturated to over-saturated, show moderate to low Mg-ratios (63–36), high TiO2 contents (1.85–3.56 wt.%), weak rare earth element fractionation [1.8<(La/Yb)n <4.6], negative Sr-anomalies (0.41<Sr* <0.91) and positive TiO2-anomalies (1.2<TiO2*<2.15). They correspond to sub-alkaline high-Ti basalts (HTiB). The La/Nb ratio (1.18±0.23) is close to that of the OIB-type Deccan basalts and incompatible element ratios: Rb/Nbn (1.07±0.3), Zr/Y (4.6±0.8) are intermediate between those of HTiB in Deccan and those of HTiB in Paraná. These geochemical signatures and recent isotopic data of Bertrand et al. [Bertrand, H., Liegeois, J.P., Deckart, K., Féraud, G., 1999. High-Ti tholeiites in Guinea and Their Connection with the Central Atlantic CFB Province: Elemental and Nd-Sr-Pb Isotopic Evidence for Preferential Zone of Mantle Upwelling in Cause of Rifting. AGU spring meeting (Abst. p 317)] suggest that their magmatic source is different from that of the other basalts of the Central Atlantic Magmatic Province (CAMP). Such signatures are restricted to a central zone coinciding with the Panafrican Rokelides suture. We propose a model of sub-lithospheric preferential channelling of an asthenospheric ascent in this zone. Two other groups of dykes were identified in French Guyana. Compared to the Jurassic ones the Proterozoic dykes have NNW-SSE and E-W trending direction, more important LILE enrichment, low TiO2 contents (<2 wt%) and Nb–Ta negative anomalies. Their calc-alkaline signature could be the result of a previous subduction and may be related to the 1800 Ma Venturi-Tapajós event, which contaminated the mantle source.  相似文献   

13.
Topographic and associated gravity signals often result from the interference of several phenomena. In the present paper, an admittance function for the superposition of several physical mechanisms acting in the same waveband is derived. If the processes are not phase related, the resulting admittance function is the average of the individual admittance functions weighted by the squared amplitude of the topography for each process.We use this concept of superposition of different processes to understand the compensation of the Atlantic ridge valley. Classical transfer function studies applied to slow-spreading ridges have concluded that the topography was emplaced on an elastic plate about 10 km thick. These analyses of gravity and topography seem to contradict the physical models explaining the median rift valley, which is thought to be due to dynamical effects and thus to be uncompensated. We obtain an “average axial valley” gravity and topography profile by stacking several profiles perpendicular to the Mid-Atlantic Ridge and subtracting a long-wavelength thermal effect. We find that the gravity over topography spectral ratio of the “average axial valley signal” is consistent with an uncompensated process. Our study thus confirms that the mode of formation of the axial valley of a slow-spreading ridge involves an uncompensated mechanism. The presence of an additional process characterized by low admittance values, uncorrelated from one profile to the other, is also suggested in order to explain the observed admittance function. The study of the long wavelength (λ > 300 km) gravity and topography signal leads us to invoke the cooling of the upper portion of the crust by water circulation and to exclude the presence of a large amount of partial melt at depth (more than 5% over a 20 km thick layer at a mean depth of 60 km).  相似文献   

14.
Two volcanic cycles can be distinguished, in the Pontid magmatic arc. They comprise an Upper Cretaceous, Lower Volcanic Cycle of which only the waning stage contains abundant pyroclastic rocks. The latter show spatial association to the fault pattern and are closely related to mineralisation. The overlying, early Tertiary, Upper Volcanic Cycle shows evidence of explosive vulcanicity in the Upper Basic Series. Dacites and rhyodacites are only locally developed and again show spatial association with the faulting.Comparison of the major and minor element chemistries of the two cycles demonstrates the clear separation into a lower tholeiitic and an upper calc-alkaline cycle. The rocks show similar chemistry to volcanic suites from island arcs in other areas.The origin of the tholeiitic magma is ascribed to melting of “dry” amphibolite during early subduction of Tethyan ocean floor beneath “Pontian Land”. This resulted in low K abundances and K/Rb ratios, and some Fe enrichment in the tholeiitic basalts.The calc-alkaline magma is thought to be derived from a later stage in the subduction process when melting of amphibole was joined by melting of biotite or phlogopite. The Upper Volcanic Cycle is thus enriched in K and shows no Fe enrichment due to a probable higher water content. The higher Cr and Ni contents of the Upper Volcanic Cycle, together with K, may imply some melting of lherzolite overlying the subducted slab.  相似文献   

15.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

16.
In the STAR/AQEM protocol microhabitats covering less than 5% of the sampling area were neglected. Driven by an ongoing discussion on the importance of these underrepresented microhabitats we tested the influence of sampling them. We investigated 48 streams representing 14 different stream types from all over Germany. Macroinvertebrates of underrepresented microhabitats were sampled in addition to the STAR/AQEM protocol. To ensure the method remains feasible in routine monitoring programmes the total sampling and sorting effort of additional sampling was limited to 20 min. Particularly those taxa were picked, which were not recognised during the routine STAR/AQEM sorting.To identify the effect of additional sampling on stream assessment results, we calculated the stream type-specific Multimetric Index (MMI) with the “main” and the “main+additional” data for each sample. The mean and median difference in MMI values between “main” and “main+additional” samples was 0.02 and 0.01, respectively. In seven of 48 samples (14.6%) a different ecological quality class was calculated with the “main+additional” dataset. Regarding common metrics within the MMI as well as intercalibration metrics differences between “main” and “main+additional” samples were analysed. The values differed most in richness metrics (e.g., number of EPTCBO Taxa, number of Trichoptera Taxa). The results of the present study show that additional sampling of underrepresented microhabitats could alter multimetric assessment results.  相似文献   

17.
Cretaceous volcanic rocks (SCV) are widely developed in the northern part of the Sanandaj-Sirjan Zone, northwest Iran. Based on the mineralogy, texture and geochemical composition these rocks are divided in two main groups, the first and main one situated in the central part of the study area and the second one in the northeast. The former is dominantly basalts, andesitic basalts, and andesites and the latter comprises andesite, trachy-andesite to acidic variants, with porphyritic to microlithic porphyry and vitrophyric textures. Beside the differences between these two groups, the chemical compositions all of these rocks show a calc-alkaline affinity and enrichment in LIL elements (Rb, Ba, Th, U, and Pb) and depletion in Nb, Ti, and Zr, as evident in spider diagrams normalized to primitive mantle. The rocks are particularly enriched in Rb and depleted in Nb and Ti, as well as displaying high Rb/Sr and Rb/Ba ratios and low ratios of incompatible elements such as Nb/U (<10; range, 0.6–9), Th/U (<2), and Ba/Rb (<20). The significant U enrichment relative to neighbouring Nb and Th in the mantle-normalized variation diagram is mainly a result of source enrichment by slab-derived fluids. Significantly lower Nb/U ratios are observed in arc volcanics. These low values are generally ascribed to the strong capacity of LILE and the inability to transfer significant amounts of HFSE via slab-derived hydrous fluid. The results of geochemical modelling suggest a mantle lithospheric source that was metasomatized by fluids derived from a Neo-Tethyan subducted slab during the Middle to Late Cretaceous in the northern part Sanandaj-Sirjan Zone.  相似文献   

18.
Abundances of major and trace elements were determined for the Tertiary volcanic rocks from SW Hokkaido. The Late Miocene to Pliocene volcanic rocks of this region show geochemical features similar to those of the Quaternary rocks, that is, K/Si, Th/Si and LREE/HREE ratios increasing across the arc, east to west, from the Pacific to the Japan Sea side. In contrast, the Early Miocene volcanic rocks, which are geographically restricted to the Japan Sea coast, are distinct from all later volcanics and show “within-plate” characteristics — in particular, high concentrations of HFS elements. The Quaternary basalts have low Hf/Yb ratios and Hf contents, whereas the Early Miocene basalts are high in Hf/Yb and Hf, similar to Hawaiian alkali basalts. The compositional variation with time may result from the progressive depletion of incompatible HFS elements in the mantle source. Th/Yb ratios increase from Early Miocene to Quaternary, possibly reflecting increase in the LIL element contribution to the mantle source during that time.  相似文献   

19.
Seven sites were instrumented in the Parsa area located in the seismically active Dead Sea rift system. Moderate and weak motions generated by earthquakes and ambient noise were used to identify amplifications due to geological and topographic effects.Three observation methods were applied to estimate site effects: (1) conventional soil–bedrock station-pair spectral ratios for earthquake motions and microtremors; (2) horizontal-to-vertical component spectral ratios for shear-waves observed simultaneously at a site (receiver function estimates) and (3) horizontal-to-vertical spectral ratios of microtremor measurements (Nakamura estimate). The site response spectra of soil sites exhibited significant peaks between 1 and 3 Hz with amplification factors typically within the range of 2.5–4.0. A bedrock site on the high plateau near the escarpment top showed a peak between 2 and 3 Hz, mainly due to an EW oscillation of the NS topographic feature. Our observations indicated that seismograms recorded in the tunnel were either enriched or depleted at certain frequencies owing to interference of incident and surface-reflected waves.  相似文献   

20.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号