首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 966 毫秒
1.
吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物   总被引:10,自引:3,他引:7  
贾静  饶竹 《岩矿测试》2008,27(6):413-417
建立了吹扫捕集-气相色谱/质谱技术测定土壤中挥发性有机化合物的方法,对标准模拟样品的基体选择、吹扫捕集条件、色谱条件等实验条件进行了考察。结果表明,方法检出限为0.20~0.60μg/kg,精密度(RSD,n=7)为2.78%~9.89%,基体加标平均回收率为81.5%~115.2%。方法准确可靠,用于批量样品的实际分析,检测结果良好。  相似文献   

2.
土壤中持久性有机污染物分析方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
通过应用加速溶剂萃取和固相萃取等前处理方式,利用气相色谱双柱和气相色谱-质谱选择离子监测相结合的互补技术,建立了土壤中20种有机氯和多氯联苯同时测定的检测方法.通过对实际样品的分析,该方法具有操作简单、节省试剂和避免了造成二次污染的可能且测定结果准确可靠.  相似文献   

3.
近年来国家对自然环境的保护愈加重视,更多被破坏或污染的土地需要进行复垦整治。在评价效果时,需要检测酚类等多项污染物指标。采用气相色谱与气相色谱-质谱联用等方法对酚类化合物直接测定时,存在色谱响应值低、稳定性差、检出限高等问题。本文针对复垦土地样品基质复杂、干扰因素多、前处理困难等特点,对该类样品的提取与净化方法进行筛选优化。根据酚类污染物检测中浓度范围大、重现性差等问题,对衍生化与非衍生化效果进行对比确定了提取和净化方法,结合衍生化条件的优化、实际样品测定结果等方面的综合研究,建立了复垦土地样品19种酚类污染物(其中2,4,6-三氯苯酚和2,4,5-三氯苯酚,以及2,3,4,5-四氯酚和2,3,5,6-四氯酚,因无法分离而合并计算)的衍生化气相色谱-质谱检测方法。该方法采用加速溶剂萃取仪,以正己烷-丙酮(体积比1∶1)提取样品,提取液经浓缩、净化后,由五氟苄基溴衍生化,气相色谱-质谱联用仪测定。该方法基质加标回收率为73.3%~107.0%,检出限为0.67~3.95μg/kg,相比非衍生化方法的检出限(10~80μg/kg)显著降低;并且衍生物的稳定性更好,色谱响应值更高,各组分表现在色谱图上的峰高(峰面积)更均衡,对于低浓度样品的测定结果更加准确。该方法能有效去除基质干扰,可为复杂基质土壤样品中的酚类污染物痕量检测提供参考。  相似文献   

4.
建立了土壤样品中7种多氯联苯(PCB 28、PCB 52、PCB 101、PCB 118、PCB 138、PCB 153、PCB 180)的分析方法。土壤样品通过加速溶剂萃取、磺化法结合Florisil固相萃取小柱净化、电子捕获检测器气相色谱分析测定,并结合气相色谱-质谱进一步确证。结果表明,方法回收率为80.06%~100.28%,相对标准偏差(RSD,n=6)为1.01%~6.28%,检出限为0.15~0.50μg/kg。用优化的方法测定复杂基质的土壤样品中多氯联苯,具有提取效率高、净化效果好、结果准确可靠、对环境污染小等优点。  相似文献   

5.
随着富硒产品关注度越来越高,对土壤中硒含量测定的研究也越来越受到人们的重视。应用传统电感耦合等离子体质谱法(ICP-MS)测定土壤样品中的硒时,受到的基体效应和多原子离子干扰比较显著,准确测定硒含量的难度较大。本文建立了采用50%王水-沸水浴消解体系,ICP-MS测定土壤样品中硒含量的方法,实验中采用动能歧视模式(KED)消除质谱干扰,选用~(103)Rh元素作为在线加入内标以消除仪器信号漂移。用该方法对有证土壤标准物质进行分析,其结果均在不确定度范围内,测定值与认定值的相对误差介于-2.01%~2.99%之间,相对标准偏差(RSD)小于6.60%,检出限为0.012μg/g,测定下限为0.048μg/g。应用该方法与国家环境保护标准方法(HJ680—2013)对20个土壤实际样品进行比对分析,其结果基本一致。该方法适合于分析测定地质等行业大批量土壤样品中的硒。  相似文献   

6.
目前针对环境样品中有机氯和拟除虫菊酯类农药的检测方法主要有气相色谱法和气相色谱-质谱法(GC-MS),由于气相色谱法采用电子捕获检测器从而具有较高的灵敏度,在污染物的环境行为研究中得到广泛应用,GC-MS法的定性效果好,但检测灵敏度相对偏低。本文研究了2018年土壤详查江苏地区样品中有机氯农药和拟除虫菊酯的残留状况,结果显示,即使经过多次净化仍有20%的样品存在假阳性或基质干扰现象。为了提高定性准确度,同时保证检测灵敏度,实验建立了复杂基质土壤中20种有机氯农药和4种拟除虫菊酯的全二维气相色谱-电子捕获检测器检测方法,最终选择中等极性的TG-35MS为第一色谱柱,非极性的(DB-1)为第二色谱柱,将鲜样与无水硫酸钠混合均匀后,以正己烷-丙酮(1:1,V/V)为提取剂进行索氏提取,采用全二维气相色谱-电子捕获检测器进行检测,外标法定量。各物质的质量浓度均在1.0~500μg/L内与其峰面积呈线性关系,相关系数均大于0.995,检出限为0.02~0.17μg/kg。用标准加入法进行回收实验,测得回收率为80.7%~103.5%,测定值的相对标准偏差(n=6)为1.84%~10.12%。本方法将高灵敏度检测器与全二维色谱相结合,在保证检测灵敏度的同时增加了峰容量,有效去除了基质干扰。相比2018年土壤详查参考方法HJ 835—2017的检出限0.02~0.09mg/kg(全扫模式),本方法检出限显著降低,且操作简单,可为复杂基质样品中的痕量超痕量检测提供参考。  相似文献   

7.
土壤样品中有机磷农药的加速溶剂萃取-气相色谱测定   总被引:7,自引:4,他引:3  
饶竹  何淼  陈巍  李松  刘艳 《岩矿测试》2010,29(5):503-507
建立加速溶剂萃取提取土壤样品中13种有机磷农药残留,经Carb柱净化、Rtx-OPP2大口径毛细管柱分离、气相色谱-火焰光度检测器检测。方法仪器检出限在0.67~1.50ng/mL,线性范围在0.67~600ng/mL,相关系数在0.9994~0.9999。模拟土壤样品和实际土壤样品基体加标回收率分别在54.3%~106%和60.7%~133%,方法精密度(RSD,n=5)在2.2%~9.9%。方法简便、灵敏,适用于土壤样品中有机磷农药残留的分析。  相似文献   

8.
杨清 《岩矿测试》2022,(3):404-411
多环芳烃(PAHs)是一类具有致癌、致突变、致畸的碳氢化合物,具有较高的辛醇-水分配系数,易被土壤颗粒吸附而影响环境和人体健康。过硫酸钠(Na2S2O8)氧化法是近些年来国内外修复PAHs污染土壤较为常用的方法,但现阶段在测定修复后土壤中PAHs含量、进行土壤修复效果评估时亟待解决的问题是:经该方法修复的土壤,若土壤中残留有过硫酸钠,在样品前处理过程中由于提取温度较高,可能会进一步加速多环芳烃的氧化反应,从而影响土壤中PAHs的准确测定。本文建立了一种在修复后土壤中加入还原剂抗坏血酸,与残留的过硫酸钠反应生成脱氢抗坏血酸,采用索氏提取结合气相色谱-质谱法(GC-MS)同时测定土壤中16种PAHs的方法,PAHs加标回收率为76.2%~110.0%。而修复后土壤若不加还原剂直接进行索氏提取,用GC-MS测定,可能会使部分PAHs及替代物的测定不准确,PAHs加标回收率仅为6.0%~72.4%。通过对比分析表明,在样品提取前加入还原剂,可以有效地消除残留过硫酸钠的影响,提高测定修复后土壤中PAHs含量的准确性。  相似文献   

9.
建立了用加速溶剂萃取,气相色谱-质谱法同时测定河流沉积物中16种多环芳烃和19种有机氯农药的分析方法,优化了萃取溶剂、萃取温度和时间、凝胶渗透色谱收集时间、固相萃取洗脱溶剂和洗脱体积等条件。16种多环芳烃的方法检出限在0.15~0.59 ng/g,加标回收率为82%~102%,相对标准偏差(RSD,n=5)为1.1%~4.5%。19种有机氯农药的方法检出限在0.14~2.23 ng/g,加标回收率为71%~108%,相对标准偏差(RSD,n=5)为1.0%~4.5%。实际样品的测定结果表明,该方法分离效果较好,能够满足沉积物样品中多环芳烃和有机氯农药的分析要求。  相似文献   

10.
建立了在线吹扫捕集-气相色谱-冷原子荧光方法测定土壤中甲基汞的方法。土壤样品经过溴酸钾/硫酸铜溶液提取后,使用二氯甲烷/水萃取与反萃取前处理方法,克服了土壤复杂基质的影响。使用四乙基硼化钠衍生试剂,将甲基汞转化为甲基乙基汞,在线吹扫捕集进行富集并进一步消除集体干扰。经条件优化,萃取时间为2h,反萃取的时间和温度分别为4h和65℃。方法准确、可靠,具有很高的灵敏度。土壤样品检出限可达0.8×10-9。标准样品测定回收率为97.6%~109%。  相似文献   

11.
A variety of approaches have previously been developed to estimate the fraction of terrestrial or marine organic carbon present in aquatic sediments. The task of quantifying each component is especially important for the Arctic due to the regions’ sensitivity to global climate change and the potential for enhanced terrestrial organic carbon inputs with continued Arctic warming to alter carbon sequestration. Yet it is unclear how each approach compares in defining organic carbon sources in sediments as well as their impact on regional or pan-Arctic carbon budgets. Here, we investigated multiple methods: (1) two end-member mixing models utilizing bulk stable carbon isotopes; (2) the relationship between long-chain n-alkanes and organic carbon (ALKOC); (3) principal components analysis (PCA) combined with scaling of a large suite of lipid biomarkers; and (4) ratios of branched and isoprenoid glycerol dialkyl glycerol tetraether lipids (the BIT index) to calculate the fraction of terrestrial organic matter components preserved in Arctic marine sediments.Estimated terrestrial organic carbon content among approaches showed considerable variation for identical sediment samples. For a majority of the samples, the BIT index resulted in the lowest estimates for terrestrial organic carbon, corroborating recent suggestions that this proxy may represent a distinct fraction of terrestrial organic matter; i.e., peat or soil organic matter, as opposed to markers such as n-alkanes or long-chain fatty acids which measure higher plant wax inputs. Because of the patchy inputs of n-alkanes to this region from coastal erosion in the western Arctic, the ALKOC approach was not as effective as when applied to river-dominated margins found in the eastern Arctic. The difficulties in constraining a marine δ13C end-member limit the applicability of stable isotope mixing models in polar regions. Estimates of terrestrial organic carbon using the lipid-based PCA method and the bulk δ13C mixing model approach varied drastically at each site, suggesting that organic matter fractions such as amino acids or carbohydrates may affect bulk organic matter composition in a manner that is not captured in the lipid-based analysis. Overall, terrestrial organic matter inputs to the Chukchi and western Beaufort Seas using the average of the methods at each site ranged from 11% to 44%, indicating that land-derived organic matter plays a substantial role in carbon dynamics in the western Arctic Ocean.  相似文献   

12.
Methanotrophic biomass and community structure were assessed for a soil column enriched with natural gas. An increase in microbial biomass, based on phospholipid ester-linked fatty acids (PLFA), was apparent for the natural gas-enriched column relative to a control column and untreated surface soil. Following GC-MS analyses of the derivatized monounsaturated fatty acids, the major component (22% of the PLFA) of the natural gas-enriched column was identified as 18·1Δ 10c. This relatively novel fatty acid has only been previously reported as a major component in methanotrophs. Its presence in the soil, together with other supportive evidence, implies that this microbial metabolic group makes a large contribution to the column flora. Other microbial groups were also recognized and differences compared between the soils analysed. A recently developed HPLC method for the separation and characterisation of archaebacterial phospholipid-derived signature di- and tetra-ether lipids was used to examine methane-producing digesters. With this technique, methanogenic biomasses of approximately 1011 bacteria per g dry weight of digestor material were determined. Differences between ratios of diether to tetraether phospholipids were apparent for the digestors analysed, though the causes are at this stage unknown. Taken together, these two methods can be used to estimate methanotrophic and methanogenic contributions in both model systems and environmental samples.  相似文献   

13.
Soil pollution by arsenic is a serious environmental problem in many mining areas. Quick identification of the amount and extent of the pollution is an important basis for developing appropriate remediation strategies. In a case study, 55 soil samples were collected from a highly heterogeneous waste dump around the Sarcheshmeh copper mine, south east Iran. Samples’ visible and near-infrared (VNIR) reflectance spectra were measured, transformed to absorbance and then pre-processed using Savitzky–Golay first-derivative (FD) and Savitzky–Golay second-derivative (SD) transformation methods. The obtained spectra were then subjected to three regression models including principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) for predicting arsenic concentration. The best prediction accuracies were obtained by SVR and PLSR methods applied on first-derivative pre-processed spectra with R 2 values of 0.81 and 0.69, respectively. It was found that VNIR spectroscopy is a successful method for predicting As concentration in contaminated soils of the dumpsites. Study of the prediction mechanism showed that the intercorrelation between arsenic and spectral features of soil including iron oxy/hydroxides and clay minerals was the major mechanism enabling the prediction of arsenic concentration. However, higher values of correlation coefficients at ~460, ~560 and ~590 nm suggested the internal association between arsenic and iron minerals as the more important mechanism for prediction. This conclusion supported previous speciation studies conducted in the same waste dump using improved correlation analysis and chemical sequential extraction method.  相似文献   

14.
Heavy metal concentrations in samples collected from the London 2012 Olympic Village were determined using a three-step sequential extraction and a rapid extraction method. Metal toxicity was measured by employing the Microtox? solid phase analysis. Both extraction methods produced comparable results (p?=?0.996), but the rapid method produced higher readings. A number of heavy metals were detected using the two extraction methods, including aluminum, arsenic, cadmium, chromium, copper, iron, nickel, lead and zinc; beryllium, molybdenum, niobium and titanium were also found in low concentration ranging between 0.16 and 27.10?mg/kg in the total acid digestion. The total metal levels in all the soil samples were within the UK Soil Guideline Value (SGV) except for lead which ranged between 62.9 and 776.2?mg/kg. The 30?min EC50 of different soil fractions was 2?C5.8?g/L. In the absence of any of heavy metals in the SGV, the Dutch Guideline values were referred. Mathematical models for a number of metals were generated based on the changes in EC50 values between each (F1, F2 and F3) soil fractions and the initial toxicity in the non-fractionated samples. The resulting models produced good R2 values (>96%) for predicting the change in toxicity of lead, cadmium, zinc and copper by measuring their changes in concentrations. These models could substantially reduce the time requires to determine the toxicity in the samples; they would be a useful tool in the clean up process where monitoring of metal toxicity is required.  相似文献   

15.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

16.
Mining activities and resulting wastes can be considered as one of the most important sources of hazardous elements in the environment. Knowledge of the spatial distribution of toxic elements in waste dump systems is necessary to assess environmental hazard and strategy. To achieve this goal, this paper investigates spatial distribution of toxic elements using statistical and geostatistical analysis. A total of 58 soil samples were collected, and the amount of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb and Zn was then determined at “Sarcheshmeh” copper mine waste dumps. In order to evaluate the presence of multivariate outliers, Mahalanobis distance technique (D 2) was applied and the multivariate outlier samples were removed. This resulted in an increase in correlation coefficient. To reduce dimension of data set, principal component analysis was applied and four principal components were determined which indicate 83.463% of the total variance of data set. Estimated PCs together with the toxic elements maps based on the ordinary kriging display aggregation of toxic elements in some parts, and validity of predictions was evaluated using the leave-one-out cross-validation method. The regression coefficients of estimated and observed values presented the reliability of the kriging estimates. Sequential Gaussian simulation method was applied for principal components due to similar results of estimated principal components and toxic elements. The results of simulation maps are almost identical to estimated outcomes.  相似文献   

17.
We have studied trapping of radioactive 127Xe in three types of carbon: carbon black (lamp black  LB), pyrolyzed polyvinylidene chloride (PVDC), and pyrolyzed acridine (C13H9N). A total of 86 samples were exposed to Xe at T between 100 and 1000°C, for times between 5 min and 240 hours, at pxe ~ 5 × 10?7 atm. Excess gas phase and loosely sorbed Xe were pumped away and the remaining, tightly bound Xe was measured by γ-spectrometry.At 100°C,× >90% of the Xe desorbs within a few minutes' pumping but a small amount remains even after 4000 min. Distribution coefficients for this tightly bound Xe are ~1 × 10?2, 1 and 10 ccSTP/g atm for LB, acridine and PVDC carbons. The tightly bound Xe consists of two components. One occurs over the entire range 100–1000°C, becoming less abundant at high T; it appears to be physisorbed. The other occurs only at T > 500°C and is probably due to volume diffusion. The adsorbed component in LB has an apparent ΔH between ?2.3 and ?5.7 kcal/mole. The diffused component, which occurs in LB and possibly in acridine carbon, has an activation energy Q = 27 ± 8 kcal/mole and a diffusion coefficient D = 1.3 × 10?17 cm2/sec at 1000°C. These values are comparable to those found for other types of amorphous carbon (Morrisonet al., 1963; Nakai et al., 1960).The low-T component displays two paradoxical features: low ΔHads, in the range for Xe physisorbed on carbon, but exceedingly long adsorption or desorption times (~103 min at 100–400 or 1000°C). Although these long times seem to suggest a high energy process such as chemisorption, our results are best explained by a model that invokes physisorption within a labyrinth of micropores—of atomic dimensions—known to exist in amorphous carbons. The long adsorption/desorption times reflect either the long distances (~5 cm) Xe atoms must migrate by random walk to enter or leave the labyrinth, or the long times needed for Xe atoms to traverse tight spots or constricted pores that connect interior and exterior surfaces of the carbon (activated entry). Both variants of this model predict long equilibration times for the observed ΔHads of ?2 to ?6 kcal/mole. Apparently, xenon can be tightly trapped in carbon without resorting to high-energy bonding or to exotic mechanisms.These results suggest that “planetary” type noble gases in meteorites, located at or near grain surfaces of amorphous carbon, may be trapped by adsorption in micropores, whereas components such as CCFXe, which are uniformly distributed in their carrier phases, may be trapped by mechanisms such as volume diffusion or ion implantation.  相似文献   

18.
Large scale environmental monitoring schemes would benefit from accurate information on the composition of soil organic matter (SOM), but so far routine procedures for describing SOM composition remain a chimera. Here, we present the initial assessment of a two step strategy for expeditious determination of SOM composition that involves: (i) building infrared fingerprints from near and mid infrared spectroscopies, two rapid and cheap yet reliable technologies; and (ii) calibrating such infrared fingerprints with multivariate chemometrics from a molecular mixing model based on the more expensive and time consuming 13C nuclear magnetic resonance technique, which discriminates five biochemical components: carbohydrate, protein, lignin, lipid and black carbon. We show fair to excellent predictive ability of the calibrated infrared fingerprints for four out of these five biochemical components, with cross-validated ratios of performance to inter-quartile distance from 3.2 to 8.3, on a small set of 23 soil samples with a wide range of organic carbon content (12–500 g/kg). Multivariate calibration models were highly selective (<2% of infrared data were used for all models). However, the specificity to one particular biochemical component of the infrared wavebands automatically selected by each model was relatively low, except for lipid. Achieving direct predictions of SOM composition on unknown soil samples with infrared spectroscopy alone will require further independent validation and a larger number of samples. Overall, the implementation of our strategy at a broader scale, based on available 13C nuclear magnetic resonance soil libraries, could provide a cost effective solution for the routine assessment of SOM composition.  相似文献   

19.
The results of infrared observations of the two Be stars X Per and V725 Tau, which are the optical components of X-ray binary systems, obtained in 1994–2016 are presented. The observations cover Be-star phases as well as shell phases. The data analysis shows that the radiation observed from the binaries at 1.25, 3.5, and 5 μm can be explained as the combined radiation from the optical components and variable sources (shells/disks) that emit as blackbodies (BBs). Emission from a source with the color temperature T c ~1000?1500 K was detected for X Per at λ ≥ 3.5 μm. The highest IR-brightness variation amplitudes for X Per were 0.9?1.2 m (JHK magnitudes) and ~1.45 m (LM magnitudes); for V725 Tau, they were 1.1?1.4 m and ~1.7 m (L magnitudes). The parameters of the optical components and interstellar extinction during the Be phases were estimated: the color excesswasE(B?V) = 0.65±0.08 m and 0.77 ± 0.03 m for X Per and V725 Tau, respectively. Light from the variable sources (disks/shells) was distinguished and their color temperatures, radii, and luminosities estimated for different observation epochs in a BB model. The variations of the binaries’ IR brightness and colors are shown to be due to changing parameters of the variable sources. The mean color temperature of the cool source (disk/shell) and the mean radius and mean luminosity of X Per are 9500± 2630 K, (35 ± 10) R, and (9100± 540) L. For V725 Tau, these parameters are 6200 ± 940 K, (27 ± 6) R, and (980 ± 420) L. The 1.25–5 μm radiation from X Per at different epochs can be represented as a sum of contributions from at least three sources: the optical component and two objects emitting as BBs. To reproduce the 1.25–3.5 μm radiation from V725 Tau, two components are sufficient: the optical component and a single variable BB object. For both binary systems, orbital variations of the IR brightness can be noted near the Be-star phase. The amplitudes of the J-band variations of X Per and V725 Tau are about 0.3 m and 0.1 m , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号