首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The analysis of nitrate in seawater and hypersaline waters should take account of a significant “salt effect”. Procedures developed for fresh water and marine waters must be applied cautiously to highly saline waters. The most widely used standard method for the determination of nitrate-nitrogen (NO3-N) in fresh and marine waters involves the quantitative reduction of nitrate by the Cd column technique followed by colorimetric procedures. In our study, three approaches to estimate NO3-N in highly saline waters were examined. The first involved dilution. This approach overcame the salt effect but dilution limited the detection of low concentrations of nitrate in highly saline waters. The second involved the use of standard nitrate solutions in saline water. This method is not recommended because of nitrate impurities in AR grade salts. The third- and preferred approach-involved the use of standard additions. “Spikes” of a known volume of NO3-N standard solution were added to natural saline waters. Nitrate values estimated by the stadard addition method were used to calculate an equation for salt error correction at different salinities applicable to waters with the same relative ionic composition as seawater. This could then be used to correct nitrate determinations in highly saline waters where standards made in distilled water were used for calibration. Many previously published data for NO3-N in saline water used methods of analysis which do not take account of salt error and are therefore probably in error.  相似文献   

2.
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.  相似文献   

3.
Though nitrate enrichment in groundwater is a worldwide phenomenon and mainly related to human impact, processes leading to nitrate enrichment in scarcely inhabited semi-arid regions are not yet well understood. In those regions, elevated nitrate concentrations put additional pressure on the scarce water resources, as they pose a serious health risk. This study applies a multidisciplinary approach (hydrogeology, isotope hydrology, and geochemistry) to understand the origin and fate of nitrate in groundwater of the semi-arid Kalahari of Botswana. Our investigations suggest that nitrate in groundwater of the study area is of natural origin, leached from a pool in the unsaturated zone that was actively involved in the soil nitrogen cycle. The presence of active (minor) recharge was found, showing that nitrate may be transported into the groundwater under the present conditions. Yet, slow travel times of replenishing water and the low recharge amounts render the thick unsaturated zone into a long-term reservoir for nitrate. Being only little influenced by reactive processes, nitrate has a high persistency in the observed groundwater system. Concentration increases induced by the present land-use do not yet appear to affect the groundwater quality but may within decades.  相似文献   

4.
地下水是张掖盆地的重要水资源,其硝酸盐污染尚未得到足够重视。对张掖盆地2004、2015年地下水硝酸盐浓度进行了系统分析,并采用美国环境保护署(USEPA)推荐的健康风险评价模型评估了地下水硝酸盐的健康风险。结果表明:自2004年以来张掖盆地地下水硝酸盐污染日趋严重。2015年硝酸盐浓度最高已达到283.32 mg·L-1,17.61%的采样点硝酸盐氮浓度超过GB5749-2006《生活饮用水卫生标准》中饮用地下水限量值(20 mg·L-1)。研究区人群经皮肤接触途径摄入硝酸盐的健康风险在可接受水平,而饮水摄入硝酸盐的健康风险较高,总风险中饮水途径引起健康风险的贡献率占99.40%,远大于皮肤接触途径。儿童经饮水摄入和皮肤接触两种途径的健康风险均显著高于成人,分别为成人的1.544倍和1.039倍。32.39%的采样点地下水硝酸盐对儿童的健康风险超出了可接受水平,14.79%的采样点地下水硝酸盐对成人的健康风险不可接受。甘州区城区、临泽县北部边缘及高台县城区周围硝酸盐浓度最高,这些区域内所有人群都面临硝酸盐引发的高健康风险,其余区域硝酸盐引发的健康风险相对较低。  相似文献   

5.
We evaluate the effects of land-use change since c.1890 on Little Lake Jackson in south-central Florida, USA. The lake currently is alkaline despite the prevalence of acidic lakes in the region. Watershed soils are acidic and poorly drained, but are underlain by limestone bedrock. Limnetic pH inferences, based on weighted-averaging tolerance regression of sedimented diatoms, indicate that Little Lake Jackson became significantly alkalized during the 1900s. Two driving forces that appear to be responsible for water-quality change are increased ionic loading and increased nutrient loading. Golf courses and residential lawns in the watershed receive substantial applications of lime, fertilizer, and irrigation with alkaline waters from deep wells, some of which reaches the lake in channelized runoff. Stormwater runoff and septic leachate also contribute to nutrient and solute loading. Sedimentary total P accumulation increased 5-fold and total N accumulation increased 3-fold since c. 1890. δ15N values suggest agricultural and septic sources for N loading. Sedimented pigments, inferred limnetic chlorophyll a values, and δ13C values of organic matter indicate that increased primary productivity occurred. Surface and subsurface inflow is nutrient-rich but low in hardness. Increased cation deposition in sediments indicates that ionic input might have reduced the lake’s natural resistance to alkalization. Lake waters remain low in ionic content, which suggests that the addition of base from carbonate sources is not responsible for all of the observed alkalization. Acid neutralization might have been facilitated by phosphate loading that led to increased base generation through greater nitrate assimilation. Inadvertent alkalization might occur commonly in regions where poorly buffered lakes are subject to significant ionic and nutrient loading from agriculture, turfgrass, and septic sources in their watersheds.  相似文献   

6.
Seven vibro-cores were collected from three shallow lakes of the Gabon (Kamalété, Nguène, Maridor) along a 300-km west–east transect close to the Equator. These lakes are located in very distinct landscapes: coastal forest-savanna mosaic, rain forest and savanna with colonising forest, respectively. Core chronologies were established by radiocarbon dating. Study of these lacustrine archives (textural variables, clay minerals, organic matter components, δ13C, pollen) allowed comparison of late Holocene environmental changes recorded at each site and with results from other studies. Lake Kamalété indicates minor climatic deterioration (increased drying and greater seasonality) between 1,410 and 500 cal. years BP, which is also recognised in southern Cameroon and east-central Africa. Lake Nguène was surrounded by dense moist forest throughout the last 4,110 years, but shows significant deterioration from ~2,800 cal. years BP, a phenomenon seen at nearby sites. Lake Maridor shows a decline of forest initiated a little after 3,800 cal. years BP, which indicates timing that is distinct from the two other sites. This was probably a response to local conditions (i.e. outlet damming). Although the three lakes display generally parallel climatic trends perhaps linked to SST oscillations, there is not perfect coherence between these three sites. Differences among the three basins may be attributable to local factors like groundwater hydrology and slope instabilities of such shallow lake systems in this equatorial region.  相似文献   

7.
三峡库区梁滩河流域水化学与硝酸盐污染   总被引:9,自引:1,他引:8  
运用水化学和水质分析技术,测定了三峡库区梁滩河流域地表水体和地下水体中的水化学组成和硝酸盐氮含量,揭示了梁滩河流域地表水和地下水水体的水化学组成和硝酸盐污染的空间分布规律、来源及循环过程。结果表明:梁滩河流域地表水的硝酸盐污染表现为沿着地表径流从上游到下游呈现出加重的趋势,这种污染趋势与养殖业、生活和工农业废污水的沿程直接排放有着直接关系;而地下水硝酸盐污染呈现出流域上游和下游较轻、而中游东侧支流区域较重的空间分布特征,这种空间分布特征与地表水体中氨氮和有机氮的含量、地表水与地下水之间的补给排泄关系、厚层土壤包气带的存在以及土地利用状况等因素有着密切的关系。  相似文献   

8.
地下水硝酸盐污染研究综述   总被引:37,自引:0,他引:37  
地下水为重要的资源,一旦受污染,将难以更新与恢复。近年来,地下水硝酸盐污染问题正日益受到国内外研究者的关注。关于这方面的研究主要在以下方面:地下水硝酸盐的转化过程与机理;地下水硝酸盐污染的来源以及避免污染的方法措施;地下水硝酸盐氮、亚硝酸盐氮的确定方法;如何减少或者除去地下水中的硝酸盐;另外还有一些地下水硝酸污染与人体健康的研究等。在综述有关文献的基础上,提出未来地下水硝酸盐污染的三个方向:水与硝酸盐运移的耦合;界面过程;人文影响与全球角度。  相似文献   

9.
The occurrence of elevated nitrate (NO3) concentration in the aquifer of the Province of Milan (northern Italy) is related to both natural and anthropogenic variables. Using the weights-of-evidence modeling technique a specific vulnerability assessment has been performed. This study presents an evolution of previous applications of the proposed methodology as a consequence of an updating of the available database, in terms of data type, quality, and accuracy, and of a more specific and enhanced statistical controls onto the final results. A comparison between the spatial distribution of vulnerability classes and the frequency of occurrences of nitrate in wells shows a high degree of correlation, both for low and high nitrate concentration. Similar results may be evidenced considering the correlation between posterior probability classes and mean nitrate concentrations in wells located in each of these classes: a high R 2 value (0.99) and the agreement with the threshold concentration value used to define prior probability testifies a general good quality of results. Groundwater-specific vulnerability has been classified in terms of vulnerability classes and, according to the outcomes of the model, the density of population can be considered the most impacting source of nitrate. Mean annual irrigation and groundwater depth can be identified as influencing factors in the distribution of nitrate, while agricultural practice appears a negligible factor.  相似文献   

10.
This study used organic matter in oligotrophic Lake Constance (southern Germany) to reconstruct lake environment and to disentangle the multiple factors, such as climate change and human impacts, which influence sedimentation in large lakes. A sediment core from Upper Lake Constance, which represents 16,000 years of Late Glacial and Holocene lake history, was analysed for organic biomarkers, hydrogen index and elements calcium, strontium, and magnesium. Magnetic susceptibility was measured to establish a high-resolution stratigraphic framework for the core and to obtain further information about changes with respect to relative allochthonous versus autochthonous sedimentation. Dinosterol—a biomarker for dinoflagellates—and calcium have low concentrations in Younger Dryas sediments and consistently high concentrations between 10,500 and 7,000 cal. years BP. These variations are attributed to changes in lake productivity, but are not reflected in the proportion of total organic carbon within the sediment. During the Younger Dryas and between 6,000 and 2,800 cal. years BP, concentrations and accumulation rates of land-plant-derived C29-steroids (β-sitosterol, stigmastanol and stigmasterol), in combination with a relatively low HI, indicate periods of enhanced terrigenous input to the lake. For the Younger Dryas, higher runoff can be attributed to a cold climate, leading to decreased vegetation cover and increased erosion. After 6,000 cal. years BP, high terrestrial input may be explained by enhanced precipitation. Biomarker and HI results, in combination with archaeological studies, raise the question as to whether lakeshore settlements affected sedimentation in Upper Lake Constance between 6,000 and 2,800 cal. years BP.  相似文献   

11.
Water containing nitrate levels above 45 mg/l is not recommended for human consumption and its prolonged intake is associated with various health conditions. In Merida city, Mexico, the only source for water supply is a karstic aquifer, but the absence of sewerage and drainage networks makes it highly vulnerable to anthropogenic contamination. In this work, the concentration and spatial distribution of nitrate in the Merida's karstic aquifer were assessed by statistical and geostatistical techniques. The sources of nitrate contamination were tracked by making statistical correlations between nitrate concentrations and key ions; the potential risk to human health was also estimated by using the Hazard Index (HI). A total of 177 groundwater samples were collected from the four water supply systems serving Merida, during 2012 and 2013. Nitrate concentrations from collected samples varied between 15.51 and 70.61 mg/l, with maximum and minimum concentrations per sampling point ranging from 47.47 to 70.61 mg/l and from 15.51 to 17.32 mg/l, respectively. Significant positive correlations (P < 0.05) between nitrates and chlorides, sulphates and potassium were found, which may indicate potential contamination from domestic wastewater and agricultural activities. The spatial distribution of nitrate concentrations in the aquifer revealed an increase in nitrates following a trajectory South–North West, towards central and northwestern zones within Merida Metropolitan Area. From the health risk analysis, it was found that infants exposed at current nitrate levels are at a higher risk (HIMAX = 1.40) than adults (HR < 1.0) and therefore, there is a clear need for implementing effective strategies to protect groundwater quality and to better manage and control nitrate pollution sources.  相似文献   

12.
Sedimentological, geochemical and particle-size analyses were used to reconstruct the evolution of both trophic state and hypolimnetic anoxia in Lake Bourget (French Alps) during the last century. Radionuclide dating (210Pb, 137Cs and 241Am) confirmed the annual rhythm of laminations in the upper sediment profile. In Lake Bourget, biochemical varves are triplets composed of a diatom layer (spring lamina), a bio-precipitated calcite-rich layer (spring/summer lamina), and a layer rich in organic matter and detrital particles (winter lamina). The onset of eutrophication and the first appearance of an anoxic facies occurred simultaneously and were dated by laminae counting to AD 1943±1 year. Persistent anoxic conditions began in AD 1960. Eutrophication is characterised by drastic increases in the flux of biogenic silica (mostly diatoms), lacustrine organic matter, and larger calcite crystals (15–30 μm). The increase of organic matter also represents a marker of the onset of anoxic conditions in the hypolimnion. Our results show that eutrophication was the main factor controlling anoxia in the hypolimnion. This eutrophication was caused mostly by the inflow of untreated sewage effluents, and to a lesser extent, by input of fertilizer-derived phosphorus during floods of the Rhone River and run-off from the lake catchment. The Rhone River, however, can also be a source of re-oxygenation via underflows that originate during flood events. Oxygenation of the hypolimnion is also controlled by low winter temperatures, which enable turnover of the lake. Thus, global warming, associated with a forecasted reduction in precipitation, might reduce the efficiency of hypolimnetic re-oxygenation in Lake Bourget.  相似文献   

13.
Records from lake sediment cores are critical for assessing the relative stability of climate and ecosystems over the Holocene. Duck Lake in south-central Lower Michigan, USA, was the focus of a study that identified how changes in the geochemical variables in lake sediments relate to variations in regional climate and local land use during the Holocene. More than 8.5 m of lacustrine sediment were recovered using Livingston and freeze corers and analyzed for organic carbon, inorganic (carbonate) carbon, total nitrogen, and trace metals. Repeating packages of sediment (1–10 cm thick) that grade from light (inorganic carbon-rich) to dark (organic carbon-rich) were found from the surface to a depth of about 8 m. Variations in the high-resolution gray scale data from core X-radiographs are highly correlated to the relative amount of inorganic carbon. Geochemical analyses of the upper 8.5 m of sediment revealed a wide range of values: 0.05–10.6% for inorganic carbon (i.e. 0.5–89% calcium carbonate) and 1.1–28% for organic carbon (i.e. 2.7–70% organic matter). Organic carbon to nitrogen ratios indicate that most of the sediment organic matter is produced within the lake. A core chronology based on eight AMS radiocarbon dates shows low sediment accumulation rates (0.05 cm/year) from 10,000 to 3,800 cal year BP and higher sediment accumulation rates (0.1–0.3 cm/year) from 3,800 cal year BP to present. We suggest that carbonate accumulates during relatively dry times, whereas organic matter accumulation dominates when nutrient input to the lake is enhanced by wetter climate. The Duck Lake core records a distinct low point in inorganic carbon deposition that may be related to the 8.2 ka cooling event now documented from several sites in North America. Spectral analysis of gray scale values shows significant ~200-year periodicities over the past 8,000 years, hypothesized to result from climate changes induced by solar forcing. Concentrations of trace metals (e.g. lead, iron, copper, zinc) indicate the onset of regional anthropogenic influence about 150 cal year BP.  相似文献   

14.
Groundwater is the major source of drinking water in Nahavand city. However, the groundwater quality at the agricultural areas has been deteriorating in recent years. Ground water quality monitoring is a tool which provides important information for water management and sustainable development of the water resources in Nahavand. Hydrochemical investigations were carried out in an agricultural area in Nahavand, western Iran, to assess chemical composition of groundwater. In this study, 64 representative groundwater samples were collected from different irrigation wells and analyzed for pH, electrical conductivity, major ions, and nitrate. The results of the chemical analysis of the groundwater showed that concentrations of ions vary widely and the most prevalent water type is Ca–Mg–HCO3, followed by other water types: Ca–HCO3, Ca–Na–HCO3, and Na–Cl, which is in relation with their interactions with the geological formations of the basin, dissolution of feldspars and chloride and bicarbonate minerals, and anthropogenic activities. Thirty-seven percent of the water samples showed nitrate (NO3 ) concentrations above the human affected value (13 mg L−1). The phosphorous (P) concentration in groundwater was between 0.11 and 0.90 mg L−1, with an average value of 0.30 mg L−1, with all of the samples over 0.05 mg L−1. The most dominant class C2-S1 (76.5%) was found in the studied area, indicating that sodicity is very low and salinity is medium, and that these waters are suitable for irrigation in almost all soils. Agronomic practices, such as cultivation, cropping, and irrigation water management may decrease the average NO3 concentration in water draining from the soil zone.  相似文献   

15.
Lake Elsinore is the largest natural lake in Southern California. As such, the lake provides a unique opportunity to investigate terrestrial climate on timescales otherwise underrepresented in the region’s terrestrial environment. In November 2003, three ∼10 m drill cores were extracted from the depocenter region of Lake Elsinore. These drill cores, spanning the past 9,500–11,200 calendar years, represent the first complete Holocene record of terrestrial climate from Southern California. In this paper, we focus on two adjacent, depocenter cores (LEGC03-2 and LEGC03-3), which have been correlated to develop a single composite core. Twenty-two AMS 14C dates on bulk organic matter and one cross-correlated exotic pollen age constitute the composite core’s age control. Several methods of analysis, including mass magnetic susceptibility, % total organic matter, % total carbonate, % HCl-extractable Al, and total inorganic P are used to infer climate for the past 9,500 calendar years in Southern California. Together, these data indicate a wet early Holocene followed by a long-term drying trend. Recent lake-level reconstructions from Owens Lake and Tulare Lake support our contention for a wetter-than-today early Holocene. Lacustrine sediments from the Mojave Desert also support our conclusions. We suggest that over the duration of the Holocene changing summer/winter insolation alters the region’s long-term hydrologic balance through its modulation of atmospheric circulation and its associated storm tracks. Minimum early Holocene winter insolation and maximum summer insolation act together to increase the region’s total annual precipitation by increasing the frequency of winter storms as well as enhancing the magnitude and spatial extent of the North American monsoon, the frequency of land-falling tropical cyclones in Southern California, and regional convective storms, respectively. Gradual decreases in summer insolation and increases in winter insolation produce the opposite effect with maximum drying in the late Holocene.  相似文献   

16.
山西浅层地下水水化学特性时空变化特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
水体主要元素的时空分布特征可反映水体物理、化学及生物过程,评估水体中的主要离子的浓度及时空变化特征是认识区域水体物质循环及水系统中元素分布的重要依据。通过对2015-2016年山西省不同季节的95个浅层地下水采样数据的检测与比较,综合运用描述性统计、空间插值分析图、Gibbs图和Piper三线图分析等方法,分析研究山西省浅层地下水水化学特征及其影响因素。结果表明:研究区地下水整体属于淡水,水质较好,地下水矿化度呈现显著的空间差异,其中中部、西南部矿化度较高且季节变化显著;东南部及西北部矿化度较低且季节变化不明显。地下水阴离子中HCO3-占主要优势,阳离子中Na+、Ca2+占主要优势,丰水期与枯水期相比,地下水主要离子中Na+和Cl-增加明显,可能受地形和季节性降水的影响。水化学类型复杂多样,主要水化学类型有HCO3--Ca2+型、HCO3--SO2-4-Na+型、HCO3--SO2-4-Ca2+-Na+型和HCO3--Cl--Na+型。水体离子的组分变化主要受岩石风化的影响,其中盆地地区受到一定的人为影响和蒸发浓缩影响。不同季节地下水中的离子相对含量变化显著,丰水期与枯水期相比,浅层地下水中的Na+和Cl-增加明显,可能受到不同程度的土壤淋溶作用影响,研究的结果将有助于区域水资源的合理优化配置以及补充区域水化学研究数据的不足。  相似文献   

17.
硝酸盐氮氧同位素在不同生态系统中的研究进展   总被引:1,自引:0,他引:1  
硝酸盐作为氮循环中的重要物质之一,已成为地下水污染的主要形式。硝酸盐的来源分为自然源和人为源。不同来源的硝酸盐具有不同的同位素特征,因此可以利用N、O同位素来识别硝酸盐的来源、迁移和转化。本文通过综述硝酸盐的主要来源及其同位素特征,简要介绍了硝酸盐同位素检测技术的发展历程,影响同位素分馏的相关作用过程;同时简述了硝酸盐同位素在农业、沙漠、森林、城市生态系统中开展的相关研究,概述了研究中存在的问题,并展望了今后的发展方向。  相似文献   

18.
新疆准噶尔盆地沙尘天气的地表环境判别   总被引:8,自引:0,他引:8  
在沙尘暴天气多发的季节里,对中国重要沙尘源区之一的准噶尔南部典型地区的地貌、土壤、植被及人类活动影响诸方面做了实地调查和取样,以及实验室分析,遴选出植被盖度、植物群落多样性、生态优势度、表层土壤含水量、土壤有机质、土壤质地、全盐含量、pH值等作为影响该区起沙过程的地表参数/变量。借助SPSS10.0软件系统中的典型判别分析 (CDA),对准噶尔南部沙尘天气高发的艾比湖地区和中发的古尔班通古特沙漠地表特征进行了有效判别。结果显示,广泛分布棕灰漠土和灰漠土,并且农用土地开垦强烈的艾比湖地区,影响地表稳定性的消极因素主要是土壤较高的pH、有机质含量及植被生态优势度。而以固定、半固定风沙土为主,内部少受人类高强度开发的古尔班通古特沙漠,地表良好的抗风蚀性主要得益于较高的植被盖度、植物群落的多样性和较粗的土壤质地。判别结果还显示,原属沙尘天气少发的克拉玛依农业开发区有相当面积的土地已具沙尘天气高发区的地表特征,从而对人类活动可能引发的灾害性环境问题提出警示。  相似文献   

19.
Long-term water quality monitoring data from two riverine lakes in the Upper Mississippi River basin, Lakes St. Croix and Pepin, were analyzed to compare the long-term average water quality conditions and land use distributions, water quality trends and loads at lake inlets and outlets, trends from long-term versus short-term monitoring records, and the ability of paleolimnological cores to accurately infer lake water quality conditions. During the 1976–2004 period, the long-term average concentrations of nutrients, suspended solids, and chlorophyll-a were consistently lower at the Lake St. Croix inlet versus the Lake Pepin inlet, which drains a greater proportion of urban and agricultural runoff. Despite these differences, nutrient trends were similar at the inlets to both lakes; reductions in total phosphorus and ammonium concentrations were attributed to improvements in point source technologies, whereas increasing nitrate concentrations were attributed to both point source changes and nonpoint source increases. Despite improvements in several water quality variables, nitrate concentrations are increasing in both lakes, sediment trends indicate persistent nonpoint source inputs to Lake Pepin, and current total phosphorus concentrations remain well above pre-1950s levels in both lakes. Since urban development and agriculture are increasing in the Lake St. Croix and Lake Pepin Watersheds, continued point source regulation and additional nonpoint source control efforts will be needed to further improve water quality in these lakes. The 1976–2004 trends for most water quality variables were similar at inlet versus outlet sites on Lake St. Croix. Trends at Lake Pepin inlet versus outlet sites were less similar, but data availability limited the comparison to the 1993–2003 period. While the truncated data record highlighted short-term trends in both lakes, the full data record was most useful for exploring general patterns in water quality. Length of monitoring record affected our ability to detect trends at the inlets to both lakes, and altered the magnitude of detected trends. During the two decades of the 1980s and 1990s, paleolimnological estimates of retained phosphorus loads were similar to those estimated from recent water quality monitoring. These similarities support the use of paleolimnological approaches to infer past water quality conditions in Lakes St. Croix and Pepin. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

20.
Sediment cores were collected for pore-water analysis from the eastern end of Devils Lake, located in northeastern North Dakota, to determine diagenetic reactions occurring in surficial bottom sediments and to evaluate the impact of these reactions on chemical concentrations in the overlying lake water. Sediment pore waters are enriched in major ions and nutrients relative to lake water. The principal sources of major ions to pore water are saline sediments located in the upper 1 m of bottom sediment. The principal source of titration alkalinity and nutrients to pore water is microbial decomposition of sedimentary organic matter by sulfate reduction. Sediment pore waters in the eastern part of Devils Lake have higher major-ion concentrations and solute-flux rates than the sediment pore waters in the central part of the lake. In contrast, sediment pore waters in the central part of Devils Lake have significantly higher nutrient concentrations and solute-flux rates. Major-ion concentrations and solute-flux rates in sediment pore water increase from west to east. These trends indicate that bottom-sediment diagenetic processes are, in part, responsible for the observed concentration gradient in the lake. The higher nutrient concentrations and the higher nutrient diffusional-flux rates in Main Bay are the result of more labile sedimentary organic matter and the occurrence of sulfate reduction. Environmentally-reactive trace-metal concentrations (Cu, Pb, Zn, and Fe) in bottom sediments decrease from west to east with distance from the surface-water sources and with increasing surface-water salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号