首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil erosion has become a major global environmental problem and is particularly acute on the Loess Plateau(LP), China. It is therefore highly important to control this process in order to improve ecosystems, protect ecological security, and maintain the harmonious relationship between humans and nature. We compared the effects of rainfall and land use(LU) patterns on soil erosion in different LP watersheds in this study in order to augment and improve soil erosion models. As most research on this theme has so far been focused on individual study areas, limited analyses of rainfall and LU patterns on soil erosion within different-scale watersheds has so far been performed, a discrepancy which might influence the simulation accuracies of soil erosion models. We therefore developed rainfall and LU pattern indices in this study using the soil erosion evaluation index as a reference and applied them to predict the extent of this process in different-scale watersheds, an approach which is likely to play a crucial role in enabling the comprehensive management of this phenomenon as well as the optimized design of LU patterns. The areas considered in this study included the Qingjian, Fenchuan, Yanhe, and Dali river watersheds. Results showed that the rainfall erosivity factor(R) tended to increase in these areas from 2006 to 2012, while the vegetation cover and management factor(C) tended to decrease. Results showed that as watershed area increased, the effect of rainfall pattern on soil erosion gradually decreased while patterns in LU trended in the opposite direction, as the relative proportion of woodland decreased and the different forms of steep slope vegetation cover became more homogenous. As watershed area increased, loose soil and craggy terrain properties led to additional gravitational erosion and enhanced the effects of both soil and topography.  相似文献   

2.
钟莉娜  王军  赵文武 《地理学报》2017,72(3):432-443
土壤侵蚀是制约黄土高原可持续发展的瓶颈因素,为分析不同面积流域降雨和土地利用格局对土壤侵蚀影响的变化趋势,本文基于土壤侵蚀评价指数,发展了降雨和土地利用格局对土壤侵蚀影响的表征方法,探讨了多流域降雨和土地利用格局对土壤侵蚀的影响。结果表明:① 2006-2012年,研究区降雨侵蚀力因子R总体上呈现上升的趋势,植被覆盖与管理因子C呈现下降趋势;② 随流域面积的增加,研究区内降雨格局对土壤侵蚀的影响逐渐降低,而土地利用格局对土壤侵蚀的影响变大;③ 在流域面积较小时,降雨格局对土壤侵蚀的影响要大于土地利用格局对土壤侵蚀的影响,而在流域面积较大时,土地利用格局对土壤侵蚀的影响大于降雨格局对土壤侵蚀的影响;④ 随着流域面积的增加,研究区的林地比例有所下降,陡坡植被覆盖类型趋于单一,这是在流域面积增大时土地利用格局对土壤侵蚀影响增加的主要原因。同时,流域面积较小时,降雨对土壤侵蚀的影响较大,但随着流域面积的增加,松软的土壤性质和沟壑纵横的地形增大了发生重力侵蚀的可能性,土壤和地形对土壤侵蚀的影响增大。  相似文献   

3.
以修正的通用水土流失方程(RUSLE)为核心,在分析流域土壤侵蚀敏感性影响因子的基础上,运用G IS技术对各敏感因子值进行估算,结合已有研究成果探讨了定量化的流域土壤侵蚀敏感性评价指标体系的建立,并以吉溪流域为例进行土壤侵蚀敏感性评价。同时分析了该流域土壤侵蚀敏感性与土壤侵蚀量的关系。最后,针对不同的流域土壤侵蚀敏感等级提出了相应的管理措施和建议。  相似文献   

4.
四川紫色土地区鹤鸣观小流域分布式侵蚀产沙模型   总被引:4,自引:0,他引:4  
从四川省南部县鹤鸣观小流域Ⅱ号支沟为研究区,构建了适合紫色土地区小流域分布式侵蚀产沙模型。该模型以20m×20m栅格为空间步长,以10min为时间步长,定量分析鹤鸣观小流域Ⅱ号支沟水土流失程度,模拟了各时段每个栅格次降雨侵蚀产沙过程,计算了每个栅格次降雨径流量、侵蚀量与沉积量,并且运用递归算法计算出整个流域次降雨侵蚀产沙量,模型能够评价流域下垫面各因子空间分布不均匀性和人类活动的影响。在鹤鸣观小流域Ⅱ号支沟进行了模型的检验,模拟过程与实测结果符合较好。  相似文献   

5.
黄土丘陵区坡面形态和植被组合的土壤侵蚀效应研究   总被引:7,自引:0,他引:7  
陈利顶  贾福岩  汪亚峰 《地理科学》2015,35(9):1176-1182
以位于陕北黄土丘陵区的羊圈沟流域为重点研究区,针对不同坡面类型(坡长、坡形、坡度)和植被组合进行野外土壤采样,利用137Cs元素示踪方法评估坡面的土壤侵蚀效应。研究发现:① 坡面形态对土壤侵蚀具有重要影响。自坡顶至坡脚,“直-凹”组合的坡型一般具有相对较低的土壤侵蚀模数,整体上起到“汇”的作用;但“凹-直/凸”组合的坡型具有相对较高的土壤侵蚀模数,在土壤侵蚀方面起到“源”的作用;其他坡型,如直坡、凸坡、“直-凸”和复杂性坡型的土壤侵蚀模数介于两者之间。② 坡面不同植被空间配置对土壤侵蚀的影响具有明显差异。研究发现,坡面植被组合(自坡顶至坡脚)为荒草地-果园、有林地-其他植被类型组合和荒草地-其他植被类型的坡面具有相对较低的土壤侵蚀模数,起到了一定“汇”的功能,但人为干扰较为强烈的景观坡面(无水土保持措施)具有相对较高的土壤侵蚀模数,整体上表现为土壤侵蚀的“源”区。  相似文献   

6.
水土流失对山地旅游地水体观光功能影响研究   总被引:2,自引:0,他引:2  
水土流失影响山地旅游景观质量,成为当前山地旅游地普遍性的环境问题之一.通过土壤与水体浊度模拟实验表明,水土流失以改变水体浊度从而影响景观观光质量,20NTU浊度可作为次降雨水土流失对水体景观影响的临界值.以浙江省天台县石梁景区实证研究得到,不同流域降雨侵蚀对水体浊度影响具有差异性,同一流域次降雨侵蚀对观光水体浊度影响受流域降水强度与降水量共同作用.  相似文献   

7.
土地利用/土地覆盖变化与土壤侵蚀关系研究进展   总被引:34,自引:7,他引:27  
土壤侵蚀作为LUCC引起的主要环境效应之一,是自然和人为因素叠加的结果。不合理的土地利用和地表植被覆盖的减少对土壤侵蚀具有放大效应。土地利用/土地覆盖变化与土壤侵蚀关系的研究已逐渐成为LUCC研究和土壤侵蚀研究的一项新的重要课题。目前,涉及土地利用/土地覆盖的土壤侵蚀研究方法有很多,本文介绍了基于模型的定量研究、基于GIS和RS的研究、基于放射性同位素的研究以及基于湖泊(水库)沉积物的研究的基本原理与研究进展,同时指出了每种方法中存在的不足。  相似文献   

8.
多尺度土地利用与土壤侵蚀   总被引:20,自引:5,他引:15  
土地利用能够通过改变一系列的自然现象和生态过程影响土壤侵蚀,尺度不同,土地利用与土壤侵蚀的作用机制也会发生变化。本文针对坡面尺度、小流域/流域尺度和区域尺度,综述了不同尺度上土地利用对土壤侵蚀的影响研究。其中,在坡面尺度上,土地利用与土壤侵蚀的研究主要包括土地利用方式和土地管理措施对土壤侵蚀的影响,相应尺度上的模型有USLE/RUSLE、WEPP等;在小流域/流域尺度上,土地利用与土壤侵蚀的研究主要涉及土地利用结构和土地利用格局对土壤侵蚀的影响,相关的模型有LISEM、AGNPS、EUROSEM和SEDEM等;在区域尺度上土壤侵蚀评价研究主要是通过尺度上推和宏观因子评价的方法进行。多尺度土地利用与土壤侵蚀研究作为自然地理学研究中的热点问题,在进一步的研究中需要关注多尺度综合与尺度转换、土地利用政策效应、土地利用格局与土壤流失过程等方面的研究内容。  相似文献   

9.
山区土地利用/覆被变化对土壤侵蚀的影响   总被引:42,自引:6,他引:36  
本文以福建省山区为例,在对福建省水土保持实验站、建瓯市牛坑龙水土保持试验站长期观测、实验资料深入分析对比的基础之上,探讨了土地利用/土地覆被变化对土壤侵蚀的影响规律。分析结果表明,土地利用/土地覆被变化对径流的产生和土壤侵蚀有重要影响,植被的覆盖度的变化直接影响着径流系数和土壤侵蚀模数;植被的覆盖度和径流系数呈负线性关系,随着覆盖度的增加径流系数逐渐减小;植被覆盖度和土壤侵蚀模数为负指数关系,随着植被覆盖度的增大,土壤侵蚀模数急剧下降。  相似文献   

10.
基于RUSLE的广东南岭土壤侵蚀敏感性研究   总被引:2,自引:0,他引:2  
基于修正的通用水土流失方程RUSLE和GIS技术,分析了影响土壤侵蚀敏感性的降雨侵蚀力因子、土壤可蚀性因子、坡度坡长因子以及植被覆盖与管理因子,并生成单要素敏感性评价图,在此基础上,评价研究区土壤侵蚀敏感性,探讨不同土壤侵蚀敏感性的分布规律及其主导因子的空间分异特征。结果表明:降雨侵蚀力因子的变化范围为8 181.52~14 621.56(MJ·mm)/(hm2·h·a),土壤可蚀性因子为0.146~0.238(t·hm2·h)/(hm2·MJ·mm),坡度坡长因子为0~612.615,植被覆盖与管理因子为0.101~1.183,土壤侵蚀的最大值和平均值分别为7 016.44和137.69 t/(km2·a),土壤侵蚀敏感性以低度敏感和较低敏感为主,不同影响因子在敏感性分区的变化范围不同,其中地形因子和植被覆盖与管理因子对土壤侵蚀最为敏感。  相似文献   

11.
土壤风蚀是中国北方地区重要的生态环境问题。锡林郭勒盟位于中国干旱、半干旱地区,是中国北方典型风蚀区,其特殊的地理位置又使得本区成为华北重要的生态屏障,为此锡林郭勒盟全区均划入了京津风沙源治理工程区。为了更好地阐明锡林郭勒盟的土壤风力侵蚀过程,指导区域的荒漠化防治,,基于气象、遥感数据,利用RWEQ模型定量分析了20 世纪90 年代以来锡林郭勒盟的土壤风蚀时空格局,揭示土壤风蚀的主要影响因素。研究表明:锡林郭勒盟多年平均土壤风蚀量为3.39 亿t。土壤风蚀强度以微度和轻度为主,主要集中在植被较好,风蚀力较低,降雨量较高,雪被覆盖地表时间较长的东、中部地区以及南部地区。侵蚀强度为中度以上的侵蚀区集中在苏尼特右旗、正镶白旗和正蓝旗的浑善达克沙地;90 年代以来,锡林郭勒盟的土壤风蚀强度总体上呈减弱趋势,主要与风场强度的减弱,植被盖度等的变化有关。土壤风蚀多发生于风蚀力较大的春季,风蚀强度较大区域的春季植被盖度与风蚀量呈显著负相关(r>0.7,p<0.01),且近20 年植被盖度提升有效降低了该区域的土壤风蚀。  相似文献   

12.
The paper presents runoff and soil erosion measurements from plots on outward-sloping rainfed agricultural terraces in the Likhu Khola drainage basin, Middle Hills, Nepal, for the pre-monsoon and monsoon periods of 1992 and 1993. Runoff coefficients ranged from 5% to over 50%, depending on the nature of the rainfall event and the characteristics of the terrace. Total rainfall amount provided the highest level of explanation for the variation in runoff. Soil losses ranged from 2.7 to 8.2 t ha–1 for 1993 and up to 12.9 t ha–1 for 1992. The higher losses were associated with red, finer-grained soils. The majority of these rates are lower than the rates of soil loss that have been commonly perceived for the Middle Hills of the Himalaya. However, they are broadly similar to rates obtained from the few other studies that have examined runoff and erosion under traditional rainfed cultivation. The results suggest that a re-evaluation of the degree of land degradation in such areas may be necessary. Relationships between soil loss and rainfall characteristics were highly variable but were improved considerably when vegetation cover was included. This indicates that the maintenance of some form of ground cover is advisable if runoff and erosion are to be minimized.  相似文献   

13.
Field measurements of drainage ditch sedimentation and suspended sediment transport were used to construct a simple sediment budget and relate seasonal variations in vegetation and the hydrological characteristics of storms to sediment dynamics in a small agricultural watershed in North Carolina. Results indicate that seasonal variations in crop coverage and vegetation in drainage ditches influence sediment delivery. Following the harvesting of crops and mowing of drainage ditches in late autumn, conditions are favorable to soil erosion and sediment transport through early spring. Storms need not be very intense or produce large rainfall totals to transport significant sediment loads. The maturation of field crops and ditch vegetation in spring produces conditions less conducive to both soil erosion and sediment transport. Intense summer thunderstorms, however, are capable of mobilizing and transporting significant amounts of sediment. The computed sediment yield of 0.1 Mg/ha/yr probably represents a low estimate that, nevertheless, is an order of magnitude less than measured ditch storage and more than two orders of magnitude less than regional estimates of soil loss on Coastal Plain croplands. The results show that headwater ditches may be decoupled from slopes so that much of the eroded soil is stored within small watersheds rather than being transported out of the basin.  相似文献   

14.
《Geomorphology》2002,42(1-2):43-57
A positive relationship between annual rainfall and geomorphic processes (runoff and erosion rates) and environmental factors (water regime, soil and vegetation cover) is often assumed for arid and semi-arid areas with an annual rainfall in the range of 100–300 mm. This assumption disregards the fact that changes along a climatic gradient, at desert margins, are not limited to purely climatic factors. They are often accompanied by a parallel change in surface properties; especially the relative extent of rocky or soil covered surfaces that differ greatly in their response to rainfall. This raises the issue whether the change in surface properties along a climatic gradient enhances the assumed positive effects of rainfall increase or limits it. The hypothesis advanced in this paper is that runoff generation and rate in arid and semi-arid areas are primarily controlled by surface properties rather than by the absolute amounts of storm and annual rain amounts. Hydrological data collected at two instrumented watersheds, located one in an arid rocky area, and the second in a semi-arid soil covered area, support this hypothesis. The implications of data obtained for runoff generation and flow continuity under changing climatic conditions are analyzed. They point to the fact that the same regional climatic change may have different, and even opposite effects, on the hydrological response of different adjoining surface units. This response is expected to be strongly controlled by the specific local surface conditions that prevailed in the area prior to the climatic change.  相似文献   

15.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

16.
Cattle trampling without forage consumption at stocking densities of 0.03-1.4 cows ha−1 was simulated on two dry-season rangelands in Kenya. Experiments under artificial rainfall documented the response of plant cover and production, infiltration, and erosion on a Luvisol and a Vertisol. Trampling reduced plant cover, biomass, and, at the highest rate, regeneration in the ensuing wet season. Infiltration was reduced on the Vertisol but not the Luvisol, although increases in runoff due to trampling were slight. Trampling increased soil loss partly by reducing vegetation cover but mainly by disrupting surface layers of sand on the Luvisol and of clay aggregates on the Vertisol. Soil loss normalized by runoff and rainfall energy declined in a sequence of erosive rainstorms as the sandy surface layer became re-established, but before vegetation recovered. Establishment of a sandy armor layer during runoff events and its disruption by dry-season trampling thus strongly affect soil-loss rates. Trampling limits plant recovery in the ensuing wet season only at intensities typical of settlement and watering centers. The experimental results, generalized with a spatial model of stock density, can be used to estimate the contribution of trampling to forage production and erosion as herding patterns change in response to sedenterization and water development.  相似文献   

17.
汶川大地震对龙门山区造成了严重破坏.地震引发的次生山地灾害以及剧烈的土壤侵蚀仍将长期持续地影响着当地居民的生产与生活.对地震前后小流域的土壤侵蚀严重性进行评价并分析其变化,将对灾后小流域水土保持综合治理及生态恢复与重建工作具有重要的指导意义.基于GIS技术,以四川省彭州市龙门山区为研究区,以小流域作为基本单元,针对研究区地震灾区小流域土壤侵蚀,构建侵蚀严重性指数评价及分级方法,对地震前后土壤侵蚀严重性及变化特征并进行评价与分析.结果表明,地震后绝大部分小流域的土壤侵蚀趋重.震后土壤侵蚀程度不严重、较严重的小流域数量别由震前8个及21个降至5个及8个,新增严重、极严重小流域分别为12个及4个,相应面积分别为183.76 km2,52.70 km2.空间上流域土壤侵蚀严重性由西北向东南递减.地震前后小流域平均海拔、平均坡度与侵蚀严重程度正相关,且平均坡度对侵蚀严重程度加重贡献更大.  相似文献   

18.
以河龙区间42个流域为对象,在流域地貌格局信息提取和侵蚀产沙过程特征指标计算及其相互关系分析的基础上,探讨地貌格局对流域侵蚀产沙过程的影响。结果表明:①在河道系统水平,河流数量、长度等几何特征指标和河流分叉率(Rb12)、分级率(Rd32)、相邻级别间的河流长度比等形状特征指标与流域侵蚀模数显著相关;②在流域系统水平,坡度粗糙度、相对高差、圆度比、高长比是影响流域侵蚀产沙过程的主要指标,其中坡度粗糙度是最根本的解释变量;③各地貌格局因子间相互作用复杂,且对侵蚀过程的影响要强于泥沙输移过程,其通径分析模型对流域侵蚀模数、输沙模数和泥沙输移比变化的解释度分别为65%、33%和20%。这对正确认识影响流域侵蚀产沙过程的格局因素和建立准确的过程模型,具有重要参考价值。  相似文献   

19.
This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures (aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features (i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales (i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.  相似文献   

20.
贵州猫跳河流域土地利用变化和土壤侵蚀(英文)   总被引:4,自引:2,他引:2  
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号