首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic ground motion due to irregular geological configurations, both of layering and topography.The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The obtained transfer functions show excellent agreement with already published results.  相似文献   

2.
Study of seismic wave excitation and propagation in laterally heterogeneous media was an active and important subject in seismology in the past two decades, numerous analytical and numerical efforts have been made in this research field. In this article, I have, first, made a brief review on those developments and then introduced and summarized a unified and efficient method, global generalized reflection-transmission (abbreviated to R/T thereafter) matrices method, for synthetic seismograms in multi-layered media with irregular interfaces developed by the author [24~26]. As demonstrated in this article, this method could be regarded as an extension of the generalized R/T coefficients method for the horizontally layered case [2,5] to the layered media with irregularly shaped interfaces by incorporating the T matrices technique [27,28]. Because of the use of a recursive scheme in computing the global generalized R/T matrices, this method is efficient, particularly for the case with a large number of irre  相似文献   

3.
A method is proposed for the determination of the dispersion equation of Love waves propagating in a homogeneous layer lying over a laterally inhomogeneous half-space. The proposed method can be made to work only when the lateral inhomogeneities in the lower half-space are finite in nature so that their Fourier transforms are available. As an illustration the dispersion equation of Love waves is obtained for one of such media in which the shear-wave velocity and the rigidity in the lower half-space either increases or decreases along the direction of propagation of waves according as the parameter of heterogeneity is positive or negative.  相似文献   

4.
Summary The frequency equation is derived for the propagation of Love waves in the earth's crust, composed of transversely isotropic layers and overlying anisotropic and inhomogeneous mantle. The exact boundary value problem is solved for a single layer and extended to multilayered media by generalizing theHaskell's technique. In fact the problem of deriving the frequency equation has been reduced to finding out the solution of the equation of motion subject to the appropriate boundary conditions. To illustrate the method, the author has derived frequency equations of Love waves for linear, exponential and generalized power law variation of vertical shear wave velocity with depth in the half space overlain by transversely isotropic inhomogeneous stratum.  相似文献   

5.
The three-dimensional thin layer element method is formulated for the dynamic response analysis of an axi-symmetric structure in submerged soil. Biot's wave equation for fluid-filled porous medium is used in the formulation. The three-dimensional thin layer element method computes the wave numbers and their associated mode shapes, for both Rayleigh waves and Love waves in submerged soil, which define the characteristics of the waves. The submerged condition affects the characteristics of the Rayleigh waves in soil. As a result, it alters substantially the soil-structure interaction stresses if the permeability of the soil is relatively large and, to less extent, the response of the structure. The thin layer element method is far more efficient than the finite element method for analyzing the fluid-filled porous medium, yet capable of taking into account a multi-layered inhomogeneous soil.  相似文献   

6.
切比雪夫伪谱法模拟地震波场   总被引:4,自引:2,他引:4       下载免费PDF全文
介绍了切比雪夫伪谱法以及快速傅立叶算法在其中的应用,并用切比雪夫伪谱法模拟二维有限区域弹性介质地震波场。分别计算了兰姆问题,均匀介质中心爆破源问题,介质内部的速度异常体问题以及各种分界面情况下地震首波传播问题。  相似文献   

7.
Summary The frequency equation is derived for the propagation of Love waves in a two layered crust overlying an inhomogeneous half-space. While exact solutions of the differential equation involved are obtained in some particular cases, both an asymptotic series and the WKBJ approximations are discussed for the solution in the general case. The asymptotic series solution and the WKBJ solution are compared with each other and with the asymptotic expansion of the exact solution. There is a good agreement between various results. It is shown that some of the existing results can be derived as particular cases of the general results obtained in this investigation.  相似文献   

8.
An exact stiffness matrix method is presented to evaluate the dynamic response of a multi-layered poroelastic medium due to time-harmonic loads and fluid sources applied in the interior of the layered medium. The system under consideration consists of N layers of different properties and thickness overlying a homogeneous half-plane or a rigid base. Fourier integral transform is used with respect to the x-co-ordinate and the formulation is presented in the frequency domain. Fourier transforms of average displacements of the solid matrix and pore pressure at layer interfaces are considered as the basic unknowns. Exact stiffness (impedance) matrices describing the relationship between generalized displacement and force vectors of a layer of finite thickness and a half-plane are derived explicitly in the Fourier-frequency space by using rigorous analytical solutions for Biot's elastodynamic theory for porous media. The global stiffness matrix and the force vector of a layered system is assembled by considering the continuity of tractions and fluid flow at layer interfaces. The numerical solution of the global equation system for discrete values of Fourier transform parameter together with the application of numerical quadrature to evaluate inverse Fourier transform integrals yield the solutions for poroelastic fields. Numerical results for displacements and stresses of a few layered systems and vertical impedance of a rigid strip bonded to layered poroelastic media are presented. The advantages of the present method when compared to existing approximate stiffness methods and other methods based on the determination of layer arbitrary coefficients are discussed.  相似文献   

9.
Summary The propagation of Love waves under the influence of an externally applied magnetic field is studied. The general phase velocity equation is derived and two special cases when the magnetic field is aligned with and transverse to the direction of wave propagation are discussed. in these cases, it is found that the magneto-elastic problem in hand can be reduced to the corresponding problem in pure elasticity.  相似文献   

10.
In this paper the coupled equations governing the dynamic behavior of unsaturated soils are derived based on the poromechanics theory within the framework of the suction-based mathematical model presented by Gatmiri (1997) [Gatmiri B. Analysis of fully coupled behavior of unsaturated porous medium under stress, suction and temperature gradient. Final report of CERMES-EDF, 1997] and Gatmiri et al. (1998) [Gatmiri B, Delage P, Cerrolaza M, UDAM: a powerful finite element software for the analysis of unsaturated porous media. Adv Eng Software 1998; 29(1): 29–43]. In this formulation, the solid skeleton displacements, water pressure and air pressure are presumed to be independent variables. The Boundary Integral formulations as well as fundamental solutions for such a dynamic upwpa theory are presented in this paper for the first time. The boundary integral equations are derived via the use of the weighted residuals method in a way that permits an easy discretization and implementation in a Boundary Element code. Also, the associated two dimensional (2D) fundamental solutions for such deformable porous medium with linear elastic behavior are derived in Laplace transform domain using the method of Hörmander. Finally, some numerical results are presented to show the accuracy of the proposed solutions. The derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in elastodynamic limiting case.  相似文献   

11.
12.
Rayleigh's principle and the concept of the local wave number have been utilised for the approximate determination of the dispersion of Love waves propagating in a laterally heterogeneous layer lying over a homogeneous half-space. The shear wave velocity and the rigidity in the surface layer have been assumed to decrease with the increase of the lateral distance from the origin. The range of validity of the dispersion equation obtained by this method has been examined critically. It was found that: (a) for existence of Love waves the minimum value of shear wave velocity in the layer must be less than that in the matter below, and (b) the phase velocity of Love waves decreases with the increase of the lateral distance from the origin.  相似文献   

13.
The paper is concerned with the propagation of the Love waves in an inhomogeneous transversely isotropic fluid saturated porous layered half-space with linearly varying properties. The analysis is based on Biot's theory. Firstly, the dispersion equation in the complex form for the Love waves in an inhomogeneous porous layer is derived. Then the equation is solved by an iterative method. Detailed numerical calculation is presented for an inhomogeneous fluid saturated porous layer overlying a purely elastic half-space. The dispersion and attenuation of the Love waves are discussed. In addition, the upper and lower bounds of the Love wave speed are explored.  相似文献   

14.
Summary This paper deals with the propagation of Love waves in a non-homogeneous isotropic layer of finite depth standing on an infinite non-isotropic layer when there a parabolic irregular zone exists at the interface of the two media.  相似文献   

15.
The study of wave propagation in finite/infinite media has many applications in geotechnical and structural earthquake engineering and has been a focus of research for the past few decades. This paper presents an analysis of 2D anti- plane problems (Love waves) and 2D in-plane problems (Rayleigh waves) in the frequency domain in media consisting of a near-field irregular and a far-field regular part. The near field part may contain structures and its boundaries with the far-field can be of any shape. In this study, the irregular boundaries of the near-field are treated as consistent boundaries, extending the concept of Lysmer's vertical consistent boundaries. The presented technique is called the Condensed Hyperelements Method (CHM). In this method, the irregular boundary is limited to a vertical boundary at each end that is a consistent boundary at the far-field side. Between the two ends, the medium is discretized with hyperelements. Using static condensation, the stiffness matrix of the far-field is derived for the nodes on the irregular boundary. Examples of the application of the CHM illustrate its excellent accuracy and efficiency.  相似文献   

16.
A mathematical formulation of the 2·5D elastodynamic scattering problem is presented and validated. The formulation is a straightforward extension of the Discrete Wave number Boundary Integral Equation Method (DWBIEM) originally proposed by Kawase1 for 2D scattering problems and subsequently extended to the 3D problem by Kim and Papageorgiou.2 It is demonstrated that the Green's function which is appropriate for a boundary formulation of the 2·5D elastodynamic scattering problem is the one corresponding to a unit force moving on a straight line with constant velocity. Such a Green's function is derived in the present study. The formulation may be used to study the wavefields in models of sedimentary deposits (e.g. valleys) or topography (e.g. canyons or ridges) with a 2D variation in structure but obliquely incident plane waves. The advantage of a 2·5D formulation is that it provides the means for calculations of 3D wavefields in scattering problems by requiring a storage comparable to that of the corresponding 2D calculations. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
研究了横向非均匀介质中的Maslov面波渐近理论,在横向弱非均匀介质的假设下,介质的纵向非均匀性反应在局部本征函数中,以局部本征函数近似真本征函数是射线理论的直接推论.由此,三维结构下的面波计算退化为准二维问题.由于本文方法属于慢度法,面波的频散使得在一般情况下得不到与体波WKBJ方法相似的褶积结果;在震源函数为高斯波包的假设下,得出了与二维体波Maslov理论图形式上完全相同的褶积结果.还讨论了吸收介质中的面波波包理论图计算,最后结果与二维体波吸收介质中的结果相似.  相似文献   

18.
An analytical model for describing the propagation and attenuation of Rayleigh waves along the free surface of an elastic porous medium containing two immiscible, viscous, compressible fluids is developed in the present study based on the poroelastic equations formulated by Lo et al. [Lo WC, Sposito G, Majer E. Wave propagation through elastic porous media containing two immiscible fluids. Water Resour Res 2005;41:W02025]. The dispersion equation obtained is complex-valued due to viscous dissipation resulting from the relative motion of the solid to the pore fluids. As an excitation frequency is stipulated, the dispersion equation that is a cubic polynomial is numerically solved to determine the phase speed and attenuation coefficient of Rayleigh waves in Columbia fine sandy loam permeated by an air–water mixture. Our numerical results show that, corresponding to three dilatational waves, there is also the existence of three different modes of Rayleigh wave in an unsaturated porous medium, which are designated as the R1, R2, and R3 waves in descending order of phase speed, respectively. The phase speed of the R1 wave is non-dispersive (frequency-independent) in the frequency range we examined (10 Hz–10 kHz) and decreases as water saturation increases, whose magnitude ranges from 20% to 49% of that of the first dilatational wave with respect to water content. However, it is revealed numerically that the R2 and R3 waves are functions of excitation frequency. Given the same water saturation and excitation frequency, the phase speeds of the R2 and R3 waves are found to be approximately 90% of those of the second and third dilatational waves, respectively. The R1 wave has the lowest attenuation coefficient whereas the R3 wave attenuates highest.  相似文献   

19.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中,由于该方法具有非侵入性、无损、高效及价格低的特点,越来越受到浅地表地球物理和地质工程学界的重视,视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质,尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量,从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少,这使得勒夫波的频散曲线比瑞雷波的简单.因此,勒夫波反演更稳定,非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰,并具有更高的分辨率,从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言,瑞雷波的探测深度是勒夫波的1.3~1.4倍;而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体,利用反卷积消除了地震子波对勒夫波波形的影响,通过更新每个块体的S波速度来拟合勒夫波波形,从而获得地下S波速度模型.该方法不基于水平层状模型假设,适用于任意二维介质模型.  相似文献   

20.
This paper aims to study the propagation of Love waves in fiber-reinforced layer lying over a gravitating anisotropic porous half-space. The closed form of dispersion equation has been derived for the Love waves in terms of Whittaker function and its derivative, which are further expanded asymptotically, retaining the terms up to second degree. The frequency equation shows that the transverse and longitudinal rigidity of reinforced material, as well as gravity and porosity of the porous halfspace have significant effect on the propagation of Love waves. The study reveals that the increment in width of reinforced layer decreases the phase velocity. For a particular width of the reinforced layer, it is also observed that the phase velocity increases with increasing porosity of the half-space, but it decreases with increasing gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号