首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-mode oscillations in solar-like stars are excited by the outer convection zone in these stars and reflected close to the surface. The p modes are trapped inside an acoustic cavity, but the modes only stay trapped up to a given frequency [known as the acoustic cut-off frequency  (νac)  ] as modes with larger frequencies are generally not reflected at the surface. This means that modes with frequency larger than the acoustic cut-off frequency must be travelling waves. The high-frequency modes may provide information about the physics in the outer layers of the stars and the excitation source and are therefore highly interesting as it is the estimation of these two phenomena that cause some of the largest uncertainties when calculating stellar oscillations.
High-frequency modes have been detected in the Sun, in β Hydri and in α Cen A and α Cen B by smoothing the so-called echelle diagram and the large frequency separation as a function of frequency has been estimated. The large frequency separation has been compared with a simple model of the acoustic cavity which suggests that the reflectivity of the photosphere is larger at high frequency than predicted by standard models of the solar atmosphere and that the depth of the excitation source is larger than what has been estimated by other models and might depend on the order n and degree l of the modes.  相似文献   

2.
The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyse the precision that will be possible using Kepler to measure stellar cycles, convection zone depths and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.  相似文献   

3.
In recent years there has been some progress towards detecting solar-like oscillations in stars. The goal of this challenging project is to analyse frequency spectra similar to that observed for the Sun in integrated light. In this context it is important to investigate what can be learned about the structure and evolution of the stars from such future observations. Here we concentrate on the structure of the upper layers, as reflected in the phase function. We show that it is possible to obtain this function from low-degree p modes, at least for stars on the main sequence. We analyse its dependence on several uncertainties in the structure of the uppermost layers. We also investigate a filtered phase function, which has properties that depend on the layers around the second helium ionization zone.  相似文献   

4.
We model stellar differential rotation based on the mean-field theory of fluid dynamics. DR is mainly driven by Reynolds stress, which is anisotropic and has a non-diffusive component because the Coriolis force affects the convection pattern. Likewise, the convective heat transport is not strictly radial but slightly tilted towards the rotation axis, causing the polar caps to be slightly warmer than the equator. This drives a flow opposite to that caused by differential rotation and so allows the system to avoid the Taylor-Proudman state. Our model reproduces the rotation pattern in the solar convection zone and allows predictions for other stars with outer convection zones. The surface shear turns out to depend mainly on the spectral type and only weakly on the rotation rate. We present results for stars of spectral type F which show signs of very strong differential rotation in some cases. Stars just below the mass limit for outer convection zones have shallow convection zones with short convective turnover times. We find solar-type rotation and meridional flow patterns at much shorter rotation periods and horizontal shear much larger than on the solar surface, in agreement with recent observations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We study eigenmodes of acoustic oscillations of high multipolarity l ∼ 100–1000 and high frequency (∼100 kHz), localized in neutron star envelopes. We show that the oscillation problem is self-similar. Once the oscillation spectrum is calculated for a given equation of state (EOS) in the envelope and given stellar mass M and radius R , it can be rescaled to a star with any M and R (but the same EOS in the envelope). For l ≳ 300, the modes can be subdivided into the outer and inner ones. The outer modes are mainly localized in the outer envelope. The inner modes are mostly localized near the neutron drip point, being associated with the softening of the EOS after the neutron drip. We calculate oscillation spectra for the EOSs of cold-catalyzed and accreted matter and show that the spectra of the inner modes are essentially different. A detection and identification of high-frequency pressure modes would allow one to infer M and R and determine also the EOS in the envelope (accreted or ground state) providing a new, potentially powerful method to explore the main parameters and internal structure of neutron stars.  相似文献   

6.
By using a non-local convection theory, both the local and nonlocal convective envelope models of evolutionary series of stars with masses from 1 to 30 solar masses are calculated. The problem of supersonic convection is reviewed. The results show that the convective velocities in the stellar atmosphere are seriously overestimated by the local mixing-length theory. Convection is strongly supersonic in the atmospheres of yellow giant and super-giants, while the local mixing-length theory is used. However, it becomes subsonic for most stars when convection returns to the normal nonlocal treatment. Convection velocities increase with increase of luminosities of stars. There is still weak supersonic convection in few red and yellow giant and super-giants. It is suspected whether this supersonic convection in stellar atmospheres is true.  相似文献   

7.
8.
Properties of the so-called strange modes occurring in linear stability calculations of stellar models are discussed. The behaviour of these modes is compared for two different sets of stellar models, for very massive zero-age main-sequence stars and for luminous hydrogen-deficient stars, both with high luminosity-to-mass ratios. We have found that the peculiar behaviour of the frequencies of the strange modes with the change of a control parameter is caused by the pulsation amplitude of a particular eigenmode being strongly confined to the outer part of the envelope, around the density inversion zone. The frequency of a strange mode changes because the depth of the confinement zone changes with the control parameter. Weakly non-adiabatic strange modes tend to be overstable because the amplitude confinement quenches the effect of radiative damping. On the other hand, extremely non-adiabatic strange modes become overstable because the perturbation of radiation force (gradient of radiation pressure) provides a restoring force that can be out of phase with the density perturbation. We discuss this mechanism by using a plane-parallel two-zone model.  相似文献   

9.
An attempt is made to infer the structure of the solar convection zone from observedp-mode frequencies of solar oscillations. The differential asymptotic inversion technique is used to find the sound speed in the solar envelope. It is found that envelope models which use the Canuto-Mazzitelli (CM) formulation for calculating the convective flux give significantly better agreement with observations than models constructed using the mixing length formalism. This inference can be drawn from both the scaled frequency differences and the sound speed difference. The sound speed in the CM envelope model is within 0.2% of that in the Sun except in the region withr > 0.99R . The envelope models are extended below the convection zone, to find some evidence for the gravitational settling of helium beneath the base of the convection zone. It turns out that for models with a steep composition gradient below the convection zone, the convection zone depth has to be increased by about 6 Mm in order to get agreement with helioseismic observations.  相似文献   

10.
The possibility of observing solar-type oscillations on other stars is of great relevance to investigating the uncertain aspects of the internal structure of stars. One of these aspects is the convective overshoot that takes place at the borders of the envelopes of stars of mass similar to, or lower than, the Sun. It affects the temperature stratification, mixing, rotation and magnetic-field generation. Asteroseismology can provide an observational test for the studies of the structure of such overshoot regions.
The seismic study of the transition in the Sun, located at the base of the convection zone, has been successful in determining the characteristics of this layer in the Sun. In this work we consider the extension of the analysis to other solar-type stars (of mass between 0.85 and 1.2 M) in order to establish a method for determining the characteristics of their convective envelopes. In particular, we hope to be able to establish seismologically that a star does indeed possess a convective envelope, to measure the size of the convective region and also to constrain the properties of an overshoot layer at the bottom of the envelope. The limitations in terms of observational uncertainties and stellar characteristics, and the detectability of an overshoot layer, are discussed.  相似文献   

11.
In the outer envelope of the Sun and in other stars, differential rotation and meridional circulation are maintained via the redistribution of momentum and energy by convective motions. In order to properly capture such processes in a numerical model, the correct spherical geometry is essential. In this paper I review recent insights into the maintenance of mean flows in the solar interior obtained from high-resolution simulations of solar convection in rotating spherical shells. The Coriolis force induces a Reynolds stress which transports angular momentum equatorward and also yields latitudinal variations in the convective heat flux. Meridional circulations induced by baroclinicity and rotational shear further redistribute angular momentum and alter the mean stratification. This gives rise to a complex nonlinear interplay between turbulent convection, differential rotation, meridional circulation, and the mean specific entropy profile. I will describe how this drama plays out in our simulations as well as in solar and stellar convection zones. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The property of inhomogeneous turbulence in conducting fluids to expel large‐scale magnetic fields in the direction of decreasing turbulence intensity is shown as important for the magnetic field dynamics near the base of a stellar convection zone. The downward diamagnetic pumping confines a fossil internal magnetic field in the radiative core so that the field geometry is appropriate for formation of the solar tachocline. For the stars of solar age, the diamagnetic confinement is efficient only if the ratio of turbulent magnetic diffusivity ηT of the convection zone to the (microscopic or turbulent) diffusivity ηin of the radiative interior is ηT/ηin 105. Confinement in younger stars requires larger ηT/ηin. The observation of persistent magnetic structures on young solar‐type stars can thus provide evidence for the nonexistence of tachoclines in stellar interiors and on the level of turbulence in radiative cores. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The mechanism responsible for exciting high-order acoustic oscillations in rapidly oscillating Ap stars is still an open issue. Recently, Balmforth et al. (hereafter BCDGV) proposed a model according to which high-frequency oscillations may be excited in roAp stars if the intensities of the magnetic fields present in these stars are sufficiently large to suppress convection at least in some region of their envelopes. Using models similar to those proposed by BCDGV, we predict the theoretical edges of the instability strip appropriate to roAp stars and compare them with the observations. Moreover, we discuss our results in the light of some of the systematic differences found between roAp stars, noAp stars and Ap stars in general. We suggest that a combination of intrinsic differences between these types of stars and a bias related to the frequencies of the unstable oscillations might hold the explanation to some of the differences observed.  相似文献   

14.
The wavelet transform method for high-quality time-frequency analysis is applied to sets of observations of relative sunspot numbers and stellar chromosphere fluxes of 10 Sun-like stars.Wavelet analysis of solar data shows that in a certain interval of time there are several cycles of activity with periods of duration which vary considerably from each other:from quasi-biennial cycles to 100-yr cycles.Cyclic activity was detected in almost all Sun-like stars that we examined,even those that previously were not considered as stars with cyclic activity according to analysis using a Scargle periodogram.The durations of solar and stellar cycles significantly change during the observation period.  相似文献   

15.
1 INTRODUCTIONThe mixing length theory (MLT) for stellar convection originally developed by Vitense(1953, 1958) has been the most popularly used local convection theory in the studies of stellarstructure and evolution. The theory was later modified and revised by many investigators,who suggested some different expressions. In fact, MLT is not a real hydrodynamic theory,rather, it is a simple "ballistic" theory which traces the motion of imaginary convective elements. In reality j stell…  相似文献   

16.
A new eigenfrequency equation for low-degree solar-like oscillations in stars is developed, based on the assumption of purely classical propagation in the stellar interior of acoustic waves modified by buoyancy and gravity . Compared with high-frequency asymptotic analysis, the eigenfrequency equation has a new functional form, with expansion in powers of ℓ(ℓ+1) instead of 1/ ω . Basic observable quantities, the 'large' and 'small' frequency separations , are interpreted as the dependence on frequency and refraction angle of a classical action integral for waves propagating close to the stellar diameter. The new eigenfrequency equation gives a significant improvement in accuracy over previous analyses when tested with solar p modes, suggesting this as an alternative and more powerful tool for applications in stellar seismology.  相似文献   

17.
We compile a sample of Sun-like stars with accurate effective temperatures, metallicities and colours (from the ultraviolet to the near-infrared). A crucial improvement is that the effective temperature scale of the stars has recently been established as both accurate and precise through direct measurement of angular diameters obtained with stellar interferometers. We fit the colours as a function of effective temperature and metallicity, and derive colour estimates for the Sun in the Johnson–Cousins, Tycho, Strömgren, 2MASS and SDSS photometric systems. For  ( B − V )  , we favour the 'red' colour 0.64 versus the 'blue' colour 0.62 of other recent papers, but both values are consistent within the errors; we ascribe the difference to the selection of Sun-like stars versus interpolation of wider colour– T eff–metallicity relations.  相似文献   

18.
Summary This paper reviews observational evidence concerning the existence of so-calledbasal heating that occurs in the outer atmospheres of all stars with convective envelopes. Effects of basal heating depend primarily on the effective temperature, with little sensitivity to surface gravity or elemental abundances. Basal heating occurs predominantly in the chromosphere, possibly in the (lower) transition region, but not at an observable level in coronae (except perhaps in early F-type and in M-type dwarf stars). Basal fluxes are observed in the slowest rotators where it shows no significant modulation. The basal flux level is observed directly on the Sun only over regions void of intrinsically strong photospheric fields. There is substantial quantitative observational and theoretical evidence that the basal emission from stellar outer atmospheres is caused by the dissipation of acoustic waves generated by turbulent convection. The magnetic canopy turns out to be of little consequence, but effects of intrinsically weak fields on the basal mechanism cannot be entirely ruled out. Solar observations constrain the spatio-temporal character of the basal atmosphere and the acoustic flux levels as a function of height, resulting in a model in which intermittent wave dissipation causes emission characteristic of both cool and warm atmospheric areas, in which — at least in the solar case — a time-averaged chromospheric temperature rise may not even exist.  相似文献   

19.
Magnetic activity signatures in the atmosphere of active stars can be used to place constrains on the underlying processes of flux transport and dynamo operation in its convective envelope. The ‘solar paradigm’ for magnetic activity suggests that the magnetic field is amplified and stored at the base of the convection zone. Once a critical field strength is exceeded, perturbations initiate the onset of instabilities and the growth of magnetic flux loops, which rise through the convection zone, emerge at the stellar surface, and eventually lead to the formation of starspots and active regions. In close binaries, the proximity of the companion star breaks the rotational symmetry. Although the magnitude of tidal distortions is rather small, non‐linear MHD simulations have nevertheless shown in the case of main‐sequence binary components that they can cause non‐uniform surface distributions of flux tube eruptions. The present work extends the investigation to post‐mainsequence components to explore the specific influence of the stellar structure on the surface pattern of erupting flux tubes. In contrast to the case of main‐sequence components, where the consistency between simulation results and observations supports the presumption of a solar‐like dynamo mechanism, the numerical results here do not recover the starspot properties frequently observed on evolved binary components. This aspect points out an insufficiency of the applied flux tube model and leads to the conclusion that additional flux transport and possibly amplification mechanisms have to be taken into account. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
熊大闰  邓李才 《天文学报》2011,52(3):177-179
1引言尽管有诸多的不满之处,由于其物理上的直观性和应用上的简单性,至今混合长理论仍几乎是唯一一个广泛用于恒星结构、演化和脉动计算的恒星对流理论.混合长理论预言,在红、黄巨星和超巨星大气中,对流是超声速的.我们曾指出,混合长理论隐含了一个假定,对流是亚声速的.对于超声速对流,无论从物理的真实性,还是从混合长公式的数学表述来看,混合长理论都是不正确的.因此超声对流的真实性是存在问题  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号