首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Interplays among diachronous tectonism, uneven sediment supply, and local marine hydraulic processes make the northern margin of the South China Sea (SCS) an ideal location to investigate the complexity of along‐strike variability in shelf margins. This study examines shelf‐margin morphology, stratigraphy, and sedimentation from the northern SCS using multichannel seismic reflection profiles complemented with the data from commercial and ocean drilling sites. Analysis of seismic reflection profiles reveals three categories of shelf‐margin cross‐sectional profiles, the concave‐up, linear, and sigmoidal, according to which five margin sectors were recognized. Results show that these margin segments differ in relief, shelf‐edge trajectory, submarine canyon development, and long‐term accretion pattern. The westernmost margin sector, or the Yinggehai (YGH)‐western Qiongdongnan (QDN) margin, has appeared to be supply dominated since its commencement at ca. 10.5 Ma, which is characterized by well‐developed prograding clinoforms, low‐angle shelf‐edge trajectories, and an absence of canyons. Presence of concave‐up profiles is also suggestive of high sediment influx. In contrast, the eastern QDN margin was primarily regulated by local subsidence and faulting, leading to a stationary shelf‐edge migrating pattern and linear upper‐slope morphology. Densely distributed slope‐confined gullies indicate the margin’s disequilibrium and erosive nature. Further east, the Pearl River Mouth (PRM) margin formed much earlier (ca. 30 Ma) and experienced a more complicated accretion history, including three phases which were dominated by sequential marginal faulting (before ca. 30 Ma), basement structure (ca. 30–23 Ma), and sediment supply (ca. 23 Ma to the present). The overall sigmoidal morphology and truncated stratigraphy of this margin probably resulted from the sculpting of local marine processes, especially ocean currents and internal waves. The exception of the central PRM margin where concave‐up profiles develop is mainly related to canyon erosion. Overall, this study highlights the vital role of local forcing factors in controlling along‐margin variations and determining the final fates of different margin segments. A comparison between the northern SCS and other well‐established examples reveals that concave‐upward shelf‐margin shapes, which are usually associated with high sediment supply, little influence from hydraulic regimes, or sometimes, high degree of canyon development, may be an indicator of good reservoir potential beyond the shelf edge.  相似文献   

2.
In southeastern Brazil, the Serra do Mar coastal mountain range blocks the sediment influx from arriving at a ca. 1,500 km long continental margin comprising Santos and Pelotas basins. Despite this deprivation, the margin accumulated a ca. 1 km thick sedimentary succession since the Mid-Miocene. Examination of seismic reflection and oceanographic data indicates that shelf-margin clinoform formation exhibits a regional variability, with major sigmoidal clinoforms developed in the transitional area between both basins. Laterally, poorly developed oblique clinoforms constitute isolated depocenters along the shelf margin. The continuous clinoform development in the transitional area is attributed to the major influence on sediment transport patterns of several ocean bottom currents flowing along the margin, such as the Brazil Coastal Current, the Brazil Current and the Intermediate Water Brazil Current. These currents erode, transport and distribute sediments across the shelf break and upper slope from distant sediment sources located either north or south of the study area. The progressive southward strengthening of the Brazil Current could be responsible for a major southward sediment redistribution from the northern Campos Basin, and/or for sediment entrainment from northward-induced transport by the Brazil Coastal Current, originally derived from the De la Plata Estuary. In the transition between Santos and Pelotas basins, the Intermediate Water Brazil Current splits forming the Santos Bifurcation, allowing for a continuous depositional process and clinoform generation. We suggest that ocean bottom currents may shape other shelf-edge ‘contouritic clinoforms’ in continental margins mainly constructed by along-strike sediment transport largely driven by long-term geostrophic currents.  相似文献   

3.
Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea-level variation and as predictors of the character of deposits beyond the shelf-break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high-resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf-break. It comprised a wave-dominated delta to the west and a barrier and back-barrier depositional system in the central and eastern area. Storm-enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm-enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf-break trajectory. However, the main phase of shelf-break bypass and basin deposition coincides with a younger steeply rising shelf-break trajectory. We interpret divergence from standard models, linking shelf-break trajectory to deep-sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea-level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf-edge. In general, our study suggests that where the shoreline does not coincide with the shelf-break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.  相似文献   

4.
Late Miocene lacustrine clinoforms of up to 400 m high are mapped using a 1700 km2 3‐D seismic data set in the Dacian foreland basin, Romania. Eight Meotian clinoforms, constructed by sediment from the South Carpathians, prograded around 25 km towards southwest. The individual clinothems show thin (10–60 m thick), if any, topsets, disrupted foresets and highly aggradational bottomsets. Basin‐margin accretion occurred in three stages with changing of clinoform heights and foreset gradients. The deltaic system prograded into an early‐stage deep depocenter and contributed to high gradient clinoforms whose foresets were dominated by closely (100–200 m) spaced 1.5–2 km wide V‐shaped sub‐lacustrine canyons. During intermediate‐stage growth, 2–4 km wide canyons were dominant on the clinoform foresets. From the early to intermediate stages, the lacustrine shelf edges were consistently indented. The late‐stage outbuilding was characterised by smaller clinoforms with smoother foresets and less indentation along the shelf edge. Truncated and thin topsets persisted through all three stages of clinoform evolution. Nevertheless, the resulting long‐term flat trajectory shows alternating segments of forced and low‐amplitude normal regressions. The relatively flat trajectory implies a constant base level over time and was due to the presence of the Dacian–Black Sea barrier that limited water level rise by spilling to the Black Sea. Besides the characteristic shelf‐edge incision of the thin clinoform topsets and the resultant sediment bypass at the shelf edge, the prolonged regressions of the shelf margin promoted steady sediment supply to the basin. The high sediment supply at the shelf edges generated long‐lived slope sediment conduits that provided sustained sediment transport to the basin floor. Clinothem isochore maps show that large volumes of sediment were partitioned into the clinoform foresets, and especially the bottomsets. Sediment predominantly derived from frequent hyperpycnal flows contributed to very thick, ca. 300–400 m in total, bottomsets. Decreasing subsidence over time from the foredeep resulted in diminishing accommodation and clinoform height, reduced slope channelization and smoother slope morphology.  相似文献   

5.
《Basin Research》2018,30(4):671-687
The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea‐level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two‐dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (ca. 113‐93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced ca. 70 km within ca. 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward‐directed shelf‐edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic.  相似文献   

6.
《Basin Research》2018,30(3):426-447
Integration of detrital zircon geochronology and three‐dimensional (3D) seismic‐reflection data from the Molasse basin of Austria yields new insight into Oligocene‐early Miocene palaeogeography and patterns of sediment routing within the Alpine foreland of central Europe. Three‐dimensional seismic‐reflection data show a network of deep‐water tributaries and a long‐lived (>8 Ma) foredeep‐axial channel belt that transported Alpine detritus greater than 100 km from west to east. We present 793 new detrital zircon ages from 10 sandstone samples collected from subsurface cores located within the seismically mapped network of deep‐water tributaries and the axial channel belt. Grain age populations correspond with major pre‐Alpine orogenic cycles: the Cadomian (750–530 Ma), the Caledonian (490–380 Ma) and the Variscan (350–250 Ma). Additional age populations correspond with Eocene‐Oligocene Periadriatic magmatism (40–30 Ma) and pre‐Alpine, Precambrian sources (>750 Ma). Although many samples share the same age populations, the abundances of these populations vary significantly. Sediment that entered the deep‐water axial channel belt from the west (Freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable age distributions that include populations of Variscan, Caledonian and Cadomian zircon at modest abundances (15–32% each). Sandstone from a shallow marine unit proximal to the northern basin margin consists of >75% Variscan (350–300 Ma) zircon, which originated from the adjacent Bohemian Massif. Mixing calculations based on the Kolmogorov–Smirnoff statistic suggest that the Alpine fold‐thrust belt south of the foreland was also an important source of detritus to the deep‐water Molasse basin. We interpret evolving detrital zircon age distributions within the axial foredeep to reflect a progressive increase in longitudinal sediment input from the west (Freshwater Molasse) and/or southwest (Inntal fault zone) relative to transverse sediment input from the fold‐thrust belt to the south. We infer that these changes reflect a major reorganization of catchment boundaries and denudation rates in the Alpine Orogen that resulted in the Alpine foreland evolving to dominantly longitudinal sediment dispersal. This change was most notably marked by the development of a submarine canyon during deposition of the Upper Puchkirchen Formation that promoted sediment bypass eastward from Freshwater Molasse depozones to the Molasse basin deep‐water axial channel belt. The integration of 3D seismic‐reflection data with detrital zircon geochronology illustrates sediment dispersal patterns within a continental‐scale orogen, with implications for the relative role of longitudinal vs. transverse sediment delivery in peripheral foreland basins.  相似文献   

7.
Deep‐marine deposits provide a valuable archive of process interactions between sediment gravity flows, pelagic sedimentation and thermohaline bottom‐currents. Stratigraphic successions can also record plate‐scale tectonic processes (e.g. continental breakup and shortening) that impact long‐term ocean circulation patterns, including changes in climate and biodiversity. One such setting is the Exmouth Plateau, offshore NW Australia, which has been a relatively stable, fine‐grained carbonate‐dominated continental margin from the Late Cretaceous to Present. We combine extensive 2D (~40,000 km) and 3D (3,627 km2) seismic reflection data with lithologic and biostratigraphic information from wells to reconstruct the tectonic and oceanographic evolution of this margin. We identified three large‐scale seismic units (SUs): (a) SU‐1 (Late Cretaceous)—500 m‐thick, and characterised by NE‐SW‐trending, slope‐normal elongate depocentres (c. 200 km long and 70 km wide), with erosional surfaces at their bases and tops, which are interpreted as the result of contour‐parallel bottom‐currents, coeval with the onset of opening of the Southern Ocean; (b) SU‐2 (Palaeocene—Late Miocene)—800 m‐thick and characterised by: (a) very large (amplitude, c. 40 m and wavelength, c. 3 km), SW‐migrating, NW‐SE‐trending sediment waves, (b) large (4 km‐wide, 100 m‐deep), NE‐trending scours that flank the sediment waves and (c) NW‐trending, 4 km‐wide and 80 m‐deep turbidite channel, infilled by NE‐dipping reflectors, which together may reflect an intensification of NE‐flowing bottom currents during a relative sea‐level fall following the establishment of circumpolar‐ocean current around Antarctica; and (c) SU‐3 (Late Miocene—Present)—1,000 m‐thick and is dominated by large (up to 100 km3) mass‐transport complexes (MTCs) derived from the continental margin (to the east) and the Exmouth Plateau Arch (to the west), and accumulated mainly in the adjacent Kangaroo Syncline. This change in depositional style may be linked to tectonically‐induced seabed tilting and folding caused by collision and subduction along the northern margin of the Australian plate. Hence, the stratigraphic record of the Exmouth Plateau provides a rich archive of plate‐scale regional geological events occurring along the distant southern (2,000 km away) and northern (1,500 km away) margins of the Australian plate.  相似文献   

8.
Two nested clinoform set types of different scales and steepness are mapped and analysed from high-resolution seismic data. Restoration of post-depositional faulting reveals a persistent pattern of small-scale, high-angle clinoforms contained within platform-scale, low-angle clinothems, showing a combined overall progradational depositional system. The large clinoforms lack a well-defined platform edge, and show a gradual increase in dip from topset to foreset. A consistent recurring stratal pattern is evident from the architecture, and is considered a result of interplay between relative sea-level change and autocyclic switching of sediment delivery focal points that brought sediment to the platform edge. This un-interrupted succession records how intra-shelf platforms prograde. Quantitative clinoform analysis may assist in determining the most influential depositional factors. Post-depositional uplift and erosion requires restoration with re-burial to maximum burial depth. Backstripping, decompaction and isostatic correction was performed assuming a range of lithologic compositions, as no wells test the lithology. Nearby wells penetrate strata basinward of the clinoforms, proving mudstone content above 50%, which in turn guide restoration values. Typical restored platform heights are 250–300 m, with correspondingly sized platform-scale clinoform heights. Typical large-scale clinoform foreset dip values are 1.3°–2.4°. Small-scale clinothems are typically 100 m thick, with restored foreset dip angles at 4.4° - > 10°. The results suggest that intrashelf platform growth occurs in pulses interrupted by draping of strata over its clinoform profile. The resultant architecture comprises small-scale clinoforms nested within platform-scale clinothems.  相似文献   

9.
《Basin Research》2018,30(Z1):568-595
The continental slopes of the South China Sea (SCS), the largest marginal sea on the continental shelf of Southeast Asia, are among the most significant shelf‐margin basins in the world because of their abundant petroleum resources and a developmental history related to sea floor spreading since Late Oligocene time. Based on integrated analyses of seismic, well‐logging and core data, we systematically document the sequence architecture and depositional evolution of the northern continental slope of the SCS and reveal its responses to tectonism, sea‐level change and sediment supply. The infill of this shelf‐margin basin can be divided into seven composite sequences (CS1–CS7) that are bounded by regional unconformities. Composite sequences CS3 to CS7 have formed since Late Oligocene time, and each of them generally reflects a regional transgressive–regressive cycle. These large cycles can be further divided into 20 sequences that are defined by local unconformities or transgressive–regressive boundaries. Depositional–geomorphological systems represented on the continental slope mainly include shelf‐edge deltas, prodelta‐slope fans, clinoforms of the shelf‐margin slope, unidirectionally migrating slope channels, incised slope valleys, muddy slope fans, slope slump‐debris‐flow complexes and large‐scale soft‐sediment deformation of bedding. Changing sea levels, reflected by evidence from sequence architecture in the study area, are generally comparable with those of the Haq (1987) global sea level curve, whereas the regional transgressions and regressions were apparently controlled by tectonic uplift and subsidence. Composite sequences CS3 and CS4 formed from Late Oligocene to Middle Miocene time and represent continental‐slope deposition during a time of northwest‐northeast seafloor spreading and subsequent development of sub‐basins in the southwest‐central SCS. The development of composite sequences CS5 to CS7 after Middle Miocene time was obviously influenced by the Dongsha Movement during convergence between the SCS and Philippine Sea plates. Climatic variations and monsoon intensification may have enhanced sediment supply during Late Oligocene‒Early Miocene (25–21 Ma) and Late Pliocene‒Pleistocene (3–0.8 Ma) times. This study indicates that shelf‐edge delta and associated slope fan systems are the most important oil/gas‐bearing reservoirs in the SCS continental‐slope area.  相似文献   

10.
Most slope-channel outcrop studies have been conducted at continental margin-scale on seismic data. However, in foreland and back-arc deepwater settings, sub-seismic scale slope channels hold equally important information on deepwater sediment delivery, often in hydrocarbon-bearing provinces. One such slope-channel system is examined in Lower Jurassic prograding shelf-margin clinoforms in Bey Malec Estancia, La Jardinera area, southern Neuquén Basin, Argentina. In a 4 km wide, 300 m tall, slightly oblique- to depositional-dip section of Jurassic Los Molles Formation deepwater slope deposits, seven clinoform timelines were identified by isolated slope-channel fills with thicknesses less than 50 m. Sedimentary logs, satellite images, a digital elevation model and drone photogrammetry were used to map variations in downslope channel geometry and infill facies. The slope channels are filled with sediment density flow deposits: poorly sorted conglomeratic debrites, structureless sandy high-density turbidites and well-sorted, fine-grained, graded low-density turbidites. The debrite portion decreases downslope, whereas high- and low-density turbidites increase. A grain-size analysis reveals a broad downslope fining trend of turbidite and debrite beds within slope channels with increasing water depth, and some notable bypass of conglomeratic facies to the lowermost slope channels and basin floor fans. The architecture of the slope channels changes from lateral to aggradational infill downstream. The Bey Malec clinoforms and its slope channels add new knowledge on downslope changes for sediment delivery in relatively shallow (<500 m water depth), prograding-dominant deepwater basins. They also highlight one of very few outcropping examples of oblique-type clinoforms.  相似文献   

11.
Sandy clinothems are of interest as hydrocarbon reservoirs but there is no proven, economic, clinothem reservoir in the Norwegian Barents Sea. We used high-resolution, 2D and 3D seismic, including proprietary data, to identify a previously untested, Barremian, clinoform wedge in the Fingerdjupet Subbasin (FSB). Data from recent well 7322/7-1 plus seismic have been used to characterize this wedge and older Lower Cretaceous clinoforms in the FSB. In the latest Hauterivian – early Barremian, during post-rift tectonic quiescence, shelf-edge clinoforms (foreset height > 150 m) prograded into an under-filled basin. Increased sediment input was related to regional uplift of the hinterland (northern Barents Shelf). Early Barremian erosion in the north-western FSB and mass wasting towards the SE were followed by deposition of delta-scale (<80 m high), high-angle (c. 8°) clinoform sets seaward of older shelf-edge clinoforms. This may be the local expression of a regional, early Barremian, regressive event. By the close of the Barremian, clinoforms had prograded, within a narrow, elongate basin, across the FSB and towards the uplifted Loppa High. A seismic wedge of high-angle (10–12°), low-relief, delta-scale (25–80 m) clinoform sets occurs between shelf-edge clinoforms to the NW and the uplifted area to the SE. Well 7322/7-1, positioned on a direct hydrocarbon indicator, <1 km NNW of the high-angle, low-relief, delta-scale clinoforms, found upward coarsening siltstone-cycles linked to relative sea-level fluctuations on a marine shelf. Sand may have accumulated, offshore from the well, in high-angle, low-relief foresets of the delta-scale clinothems (which are typical geometries elsewhere interpreted as ‘delta-scale, sand-prone subaqueous clinoforms’). Deposition was controlled by the paleosurface, storms and longshore currents on an otherwise mud-dominated shelf. The study highlights challenges associated with exploration for sandstone reservoirs in seismic wedges on an outer shelf.  相似文献   

12.
Summary. We present evidence for a seismic discontinuity near 200km depth (the Lehmann Discontinuity) under the passive continental margin of northwest Australia, where continental lithosphere merges into oceanic lithosphere. The velocity contrast across the discontinuity is 0.2–0.3 km s-1, and is similar to the contrast across discontinuities at similar depths in seismic models for purely continental paths to the east under central Australia. The discontinuity has been shown to be present under continents, oceans and now at continental margins, and is probably a worldwide feature.  相似文献   

13.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

14.
Lacustrine basins and their deposits are good paleoclimate recorders and contain rich energy resources. Shelf-margin clinoforms do exist in deep lacustrine basins, but with striking differences from those in deep marine basins, caused by a correlation between the river-derived sediment supply and the lake level. This study uses empirical relationships to calculate the water and sediment discharge from rivers and coeval lake level during wet–dry cycles at 10 s of ky time scale. Sediment supply and lake-level changes are used for a stratigraphic forward model to understand how lacustrine clinoforms develop under different climate conditions. The results show that both wet and dry cycles can be associated with thick deep-water fan deposits, supporting the existing climate-driven lacustrine model proposed based on field data (e.g. Neogene Pannonian Basin and Eocene Uinta Basin). The wet period with high sediment supply and rising lake level creates the highly aggradational shelf, progradational slope and thick bottomset deposits. This is contrary from marine basin settings where the presence of rising shelf-margin trajectory commonly indicates limited deep-water fan deposits. This work suggests marine-based stratigraphic models cannot be directly applied to lacustrine basins.  相似文献   

15.
《Basin Research》2018,30(Z1):248-268
The architecture of the Western Andes is remarkably constant between southern Peru and northern Chile. An exception, however, is present near Arica at 18°S, where the Andes change their strike direction by ca. 50° and the Coastal Cordillera is absent over an along‐strike width of 50 km. Although this feature has been mentioned in several previous studies, no effort has been made yet to describe and explain this peculiar morphology of the Western Central Andean forearc. Here, we propose a large‐scale model to explain the Myr‐long low uplift rate of the Arica Bend concerning seismic coupling and continental wedge‐top basin evolution. New geomorphic and sedimentologic data are integrated with seismicity and structural data from the literature to interpret the post‐Oligocene pattern of uplift, erosion and sediment transport to the trench. Results show that the Arica Bend has been marked by exceptionally low coastal uplift rates over post‐Oligocene timescales. In addition, this uplift anomaly at the Arica Bend correlates with relatively high sediment discharge to the corresponding trench segment since late Oligocene time. We interpret that before 25 Ma, the forming seaward concavity of the subduction zone induced trench‐parallel extension at the curvature apex of the overriding forearc. The subsequent low uplift rate would have then triggered a feedback mechanism, where the interplay between relatively low interplate friction, low coastal uplift and relatively high sediment discharge favoured Myr‐long relative subsidence at the Arica Bend, in contrast to Myr‐long uplift of the Coastal Cordillera north and south of it.  相似文献   

16.
Seismic-reflection data show that most deepwater (>200 m water depth) basins are filled by sand and mud dispersed across clinoformal geometries characterized by gently dipping topsets, steeper foresets and gently dipping bottomsets. However, the entire geometry of these ubiquitous clinoforms is not always recognized in outcrops. Sometimes the infill is erroneously interpreted as “layer cake” or “ramp” stratigraphy because the topset-foreset-bottomset clinoforms are not well exposed. Regional 2-D seismic lines show clinoforms in the Lower to Middle Jurassic Challaco, Lajas, and Los Molles formations in S. Neuquén Basin in Argentina. Time equivalent shelf, slope and basin-floor segments of clinoforms are exposed, and can be walked out in hundreds of metres thick and kilometres-wide outcrops. The studied margin-scale clinoforms are not representing a continental-margin but a deepwater shelf margin that built out in a back-arc basin. Lajas-Los Molles clinoforms have been outcrop-mapped by tracing mudstones interpreted as flooding surfaces on the shelf and abandonment surfaces (low sedimentation rate) in the deepwater basin. The downslope and lateral facies variability in the outcrops is also consistent with a clinoform interpretation. The Lajas topset (shelf) is dominated by fluvial and tidal deposits. The shelf-edge rollover zone is occasionally occupied by a 40–50-m-thick coarse-grained shelf-edge delta, sometimes incising into the underlying slope mudstones, producing oblique clinoforms expressing toplap erosion on seismic. A muddy transgressive phase capping the shelf-edge deltas contains tidal sandbodies. Shelf-edge deltas transition downslope into turbidite- and debris flow-filled channels that penetrate down the mud-prone Los Molles slope. At the base-of-slope, some 300m below the shelf edge, there are basin-floor fan deposits (>200 m thick) composed of sandy submarine-fan lobes separated by muddy abandonment intervals. The large-scale outcrop correlation between topset–foreset–bottomset allows facies and depositional interpretation and sets outcrop criteria recognition for each clinoform segment.  相似文献   

17.
Lacustrine rift basins commonly preserve a fairly complete record of the sediment source-to-sink (S2S) system, and consequently may form an ideal natural laboratory for establishing quantitative relationships between the various elements within the S2S system. The tectonic-activity rate in the source (e.g., fault-growth rate and fault-activity rate), accommodation space and depositional system in the sink (e.g., areal extent and volume, as well as the depositional dip of the fan- and braid-deltas) are genetically related and their quantitative correlations are explored. The Palaeogene succession on the southwestern margin of the Huanghekou Depressionin the Bohai Bay Basin, one of the largest lacustrine rift basins in eastern China, was chosen to study these relationships, using 3-D seismic, core and well-log data. The tectonic activity was strongly related to the sediment supply, accommodation space and morphology of the sink area. Three different rates of tectonic activity are identified; these led to changes in the basic features of the S2S system that influenced each other. In Members 4 and 3 (lower unit) of the Shahejie Fm. (40.44–44.7 Ma), strong tectonic activity led to significant uplift, resulting in the widest exposure of the provenance area to erosion, to a high sediment-supply rate, to a steep slope and to a large accommodation space which controlled the development of several fan-deltas with steep progradational angles. In Member 3 (upper unit) of Shahejie Fm. (37.89–40.44 Ma) and Member 3 of Dongying Fm. (30.2–33.28 Ma), decreased tectonic activity led to slower uplifting, resulting in a wider alluvial plain, longer transport distances, a lower sediment-supply rate and less accommodation space, so that braid-deltas with larger volumes and a gentler slope developed; In Members 1 and 2 of Shahejie Fm. (33.28–37.89 Ma) and Member 2 of Dongying Fm. (26.71–30.2 Ma), still further decreasing tectonic activity led to a still lower sediment-supply rate, a more gentle depositional slope, less accommodation space, and the development of several braid-deltas with a gentle angle. The quantitative relationships established here advance our understanding of the relationships within lacustrine source-to-sink systems, especially for tectonically controlled rift basins.  相似文献   

18.
Sediment supplied by continental sources is commonly suspected to have exerted a strong influence on the development of canyons and other morphological features on the continental slopes, but rarely is the sediment supply known sufficiently quantitatively to test this link. Here, we outline an area where offshore morphology, in the western Ionian Sea, may be linked to estimated sediment fluxes produced by subaerial erosion in NE Sicily and SW Calabria. Shelves in this area are narrow (<1 km), and the bathymetry shows that rivers and adjacent submarine channels are almost directly connected with each other. Integrated topographic analyses were performed on a merged digital elevation model (DEM) of ASTER data for subaerial topography and multibeam sonar data for submarine bathymetry. Spatial variations in sediment fluxes from onshore erosion were assessed using a variety of methods, namely: long‐term sediment flux from Pleistocene uplift rates, decadal sediment flux from landslide occurrences and published long‐term exhumation rates from 10Be cosmogenic nuclide concentrations. Submarine channels associated with rivers delivering larger sediment fluxes have broad channels, high relief and smooth concave‐upward longitudinal profiles. Conversely, submarine channels that lie offshore small‐flux rivers have straight longitudinal profiles, low relief and steep gradients. Where river catchments supply a greater sediment flux offshore, shelves tend to be wider (ca. 400 m) and submarine channels have gentler gradients. In contrast, where catchments supply less sediment flux, shelves are narrow (250–300 m) and offshore channel gradients are steeper. The variation of submarine morphology with tectonic uplift rate was also studied, but we find that, unlike onshore terrains where tectonics is commonly an important factor influencing channel morphology, in the submarine landscapes, sediment flux appears to dominate here.  相似文献   

19.
The western North China Craton (W-NCC) comprises the Alxa Terrane in the west and the Ordos Block in the east; they are separated by the Helanshan Tectonic Belt (HTB). There is an extensive debate regarding the significant Ordovician tectonic setting of the W-NCC. Most paleogeographic reconstructions emphasized the formation and rapid subsidence of an aulacogen along the HTB during the Middle–Late Ordovician, whereas paleomagnetic and geochronologic results suggested that the Alxa Terrane and the Ordos Block were independent blocks separated by the HTB. In this study, stratigraphic and geochronologic methods were used to constrain the Ordovician tectonic processes of the W-NCC. Stratigraphic correlations show that the Early Ordovician strata comprise ~500-m-thick tidal flat and lagoon carbonate successions with a progressive eastward onlap, featuring a west-deepening shallow-water carbonate shelf. In contrast, the Late Ordovician strata are composed of ~3,000-m-thick abyssal turbidites in the west and ~400-m-thick shallow-water carbonates in the east, defining an eastward-tapering basin architecture. Early Ordovician detrital zircons with ages of ~2,800–1,700 Ma were derived from the Ordos Block; the Late Ordovician turbidites were sourced from the western Alxa Terrane, based on zircon ages clustered at ~1,000–900 Ma. The petrographic modal composition and zircon age distribution imply a provenance shift from a stable craton to a recycled orogen in the Middle Ordovician. These shifts define a tectonic conversion from a passive continental margin to a foreland basin at ~467 Ma, resulting in the eastward progradation of the turbidite wedge around the HTB, the eastward backstepping of the carbonate platform in the east and the eastward expansion of orogenic thrusting in the western Alxa Terrane. This tectono-sedimentary shift coincided with the advancing subduction of the southern Paleo-Asian Ocean beneath the Alxa Terrane, generating the western Alxa continental arc and the paired retro-arc foredeep in the east under a compressional tectonic regime.  相似文献   

20.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号