首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2011年6月大气环流和天气分析   总被引:1,自引:0,他引:1  
黄威 《气象》2011,37(9):1178-1184
2011年6月环流特征如下:北半球高纬度地区为单一极涡,强度较常年同期偏弱,西太平洋副热带高压较常年偏强,欧亚中高纬环流较平直,多短波槽活动,季风槽较常年略偏弱,槽前西南气流明显。6月,全国平均降水量为102.8mm,比常年同期(97.1mm)偏多5.9%。全国平均气温为20.5℃,比常年同期(19.5℃)偏高1.0℃。月内,我国主要天气气候事件有:长江中下游、华南、西北地区东南部、川渝地区、华北、黄淮、东北南部等地发生暴雨洪涝;有3个热带气旋生成并登陆我国;黄淮等地出现极端高温天气;西北东部、华北、黄淮、江淮北部等地上中旬气象干旱持续发展,下旬干旱缓解;全国23个省(市、区)遭受风雹灾害。  相似文献   

2.
2011年7月大气环流和天气分析   总被引:2,自引:0,他引:2  
于超 《气象》2011,37(10):1314-1319
2011年7月环流特征如下:北半球高纬度地区极涡呈多极型分布,西太平洋副热带高压较常年偏弱,欧亚中高纬盛行纬向环流,多短波槽活动。7月,全国平均降水量为105.8 mm,较常年同期(115.9mm)偏少8.7%。全国平均气温为22.1℃,较常年同期(21.4℃)偏高0.7℃。月内,我国主要天气气候事件有:全国共出现7次强降水过程,但没有发生大范围持续性的严重洪涝灾害;4个热带气旋生成但只有一个登陆我国;新疆、内蒙占西部、江南、华南、江汉、江淮、黄淮、华北等地相继出现高温天气。  相似文献   

3.
2015年7月大气环流和天气分析   总被引:1,自引:3,他引:1  
沈晓琳  张芳华  周博坤 《气象》2015,41(10):1298-1304
2015年7月环流特征如下:北半球极涡呈多极型,中高纬西风呈5波型分布。西太平洋副热带高压强度偏强。7月全国平均降水量88.7 mm,较常年同期偏少26.5%,为1951年来历史同期最少;全国平均气温为22.1℃,较常年同期偏高0.2℃。月内共出现7次主要降水过程,多站出现极端日降水量。7月共有5个热带气旋在西北太平洋和南海活动,生成个数与常年同期基本持平,并有2个台风(莲花和灿鸿)在我国登陆。新疆出现持续高温天气;华北、黄淮等地出现气象干旱;全国24个省(区、市)遭受风雹灾害。  相似文献   

4.
2019年7月大气环流和天气分析   总被引:1,自引:1,他引:0  
解晋  周宁芳 《气象》2019,45(10):1494-1500
2019年7月北半球的大气环流主要特征表现为,极涡呈偶极型分布,较常年同期偏强;欧洲高空冷涡异常偏强,中上旬西太平洋副热带高压位置偏南,下旬北抬。7月全国平均降水量为126.3 mm,较历史常年同期偏多4.7%,江南大部以及西南地区较历史同期显著偏多1倍以上,黄淮、江淮地区降水较常年同期偏少5成以上;全国平均气温为22.1℃,较历史同期略偏高。平均高温日数多于常年同期(4.3 d),达到了5.7 d,华北南部、黄淮、江淮以及南疆等地高温日数显著偏多,山西、辽宁、新疆、广东等地共61站发生极端高温事件。本月内有7次区域性暴雨天气过程,主要出现在我国南方地区,多站出现极端日降水量。共有4个台风生成,接近历史同期水平,只有1个台风登陆我国,较历史同期偏少。  相似文献   

5.
2011年1月大气环流和天气分析   总被引:3,自引:0,他引:3  
韦青 《气象》2011,37(4):508-512
2011年1月大气环流主要特征如下:北半球极涡中心位于北美北部,强度比常年同期偏弱.中高纬度地区环流呈现三波型分布,东亚大槽、北美槽强度偏弱,西欧槽接近常年同期,东亚锋区明显南压.南支槽位于90°E附近,强度与常年相当.西北太平洋副热带高压明显偏弱.1月主要气候特点:全国平均气温为-8.3℃,比常年同期(-5.9℃)偏低2.4℃,全国平均降水量为8.2 mm,比常年同期(12.1 mm)偏少3.9 mm.华北、黄淮等地区干旱持续发展,冷空气活动频繁,南方雨雪冰冻灾害严重.月内有3次中等强度冷空气及6次降水过程.  相似文献   

6.
2017年7月大气环流和天气分析   总被引:2,自引:1,他引:1  
霍达  孙军  储文宗 《气象》2017,43(10):1302-1308
2017年7月大气环流特征为,极涡呈偶极型分布,主体强度较常年偏强;中高纬环流呈5波型分布,北半球副热带高压强度偏强,西太平洋副热带高压整体位置偏北,脊线持续北抬。7月我国平均气温为23.2℃,较常年同期(21.9℃)偏高1.3℃。全国平均降水量112.5 mm,较常年同期(120.6 mm)偏少6.7%,东北地区西部、江南地区东北部、江淮地区西南部和新疆北部等地降水偏少显著。强降水天气主要出现在东北地区和南方,7月我国出现9次区域性暴雨天气过程,7月13—14日降水过程多方面突破历史极值。7月西北太平洋地区有8个台风生成,其中7个台风活跃,3个台风登陆我国,数量较历史同期明显偏多;台风生成个数与1994、1967和1971年并列为历史同期最多。内蒙古东部出现气象干旱,江淮江汉伏旱发展。中东部地区和新疆持续高温天气,最长持续天数为20 d,1884站出现35℃以上高温天气;高温极值为49℃,发生在吐鲁番站。  相似文献   

7.
2016年7月大气环流和天气分析   总被引:8,自引:4,他引:4  
权婉晴  何立富 《气象》2016,42(10):1283-1288
2016年7月大气环流特征为,极涡呈偏心型分布,主体强度较常年偏强;中高纬环流呈4波型分布,北半球副热带高压强度偏强,西太平洋副热带高压整体位置偏南,脊线南北振荡。7月我国平均气温为22.6℃,较常年同期(21.9℃)偏高0.7℃。全国平均降水量131.8 mm,较常年同期(120.6 mm)偏多9.3%,华北、江淮和江南等地偏多显著。强降水天气主要出现在华北地区和南方,7月我国出现8次区域性暴雨天气过程,7月18—22日降水过程多方面突破历史极值。7月西北太平洋地区有4个台风生成,3个台风活跃,2个台风登陆我国,数量较历史同期明显偏少。第一号台风是1949年以来生成时间第二晚的首个台风。内蒙古东北部出现气象干旱。中东部地区和新疆持续高温天气,最长持续天数为11 d,最大影响1075个站点;高温极值为46.8℃,发生在吐鲁番站。  相似文献   

8.
2018年7月大气环流和天气分析   总被引:2,自引:2,他引:0  
张夕迪  孙军 《气象》2018,44(10):1370-1376
2018年7月大气环流的主要特征是极涡偏强且呈单极型分布,中高纬环流呈4波型,西太平洋副热带高压强度较常年明显偏强,位置较常年明显偏北。7月全国平均气温22.9℃,较常年同期偏高1.1℃,为1961年以来历史同期第三高;全国平均降水量133.8 mm,比常年同期(120.6 mm)偏多11%,与历史同期相比呈现北多南少的分布特征。月内我国有7次区域性暴雨天气过程,多站出现极端日降水量。7月共有5个热带气旋在西北太平洋和南海活动,并有“玛莉亚”、“山神”、“安比”3个台风登陆,生成和登陆个数均较常年偏多。我国中东部出现持续性高温天气,同时强对流天气频发,影响范围较广。  相似文献   

9.
2017年3月大气环流和天气分析   总被引:2,自引:2,他引:0  
尤悦  张涛  陈义 《气象》2017,43(6):762-768
2017年3月大气环流的主要特征是极涡偏强且呈单极型分布,中高纬环流呈4波型,西太平洋副热带高压强度较常年偏弱,南支槽强度较常年偏强。3月全国平均气温4.5℃,较常年同期偏高0.4℃;全国平均降水量36.2 mm,比常年同期(29.5 mm)偏多22.7%。月内我国东部地区有2次中等强度冷空气过程;南方地区有3次区域性暴雨天气过程;北方地区有2次沙尘天气过程;江苏、湖南等省局地遭受风雹袭击。  相似文献   

10.
2012年3月大气环流和天气分析   总被引:2,自引:1,他引:1  
樊利强  孙谨 《气象》2012,38(6):751-757
2012年3月大气环流主要特征是:北半球极涡呈多极型分布,强度较常年同期略偏强;中高纬度环流呈4波型分布,中低纬地区南支槽略偏强,有利西南暖湿空气向我国的输送;西太平洋副热带高压强度偏弱。3月全国平均气温为3.5℃,比常年同期(3.8℃)略偏低0.3℃。全国平均降水量为31.4 mm,较常年同期(28.9 mm)偏多8.7%。月内我国出现了3次主要的冷空气过程,北方出现今年首次沙尘天气过程,南方持续低温阴雨天气。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

15.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

16.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号