首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
第22周的峰年即将来临,这是研究太阳活动,包括耀斑物理过程及机制、太阳活动现象对日地空间及地球物理种种影响,以及太阳活动区物理等的一个极好的机会。我国已组织起全国性的太阳活动联测网,北京天文台的太阳射电观测是其成员之一,1988年间10厘米波(2840MHz)总强度射电望远镜投入常规观测。6厘米强度干涉仪的单站接收设备已研制成功,也参加了联测。在1988年的四次联测时段中(3月15日—21日;4月16日—21日;6月23日—7月8日;12月15日—25日)除第一次因天线检修有部分时日未跟踪观测外,其它次联测都有较好的联测资料。巡视时间:夏令时时期2345UT—0715UT,非夏令时时期0045——0745UT。联测时段内共记录41次爆发列于表1。表2为爆发类型的分布及所对应的耀斑级别分布,表3为爆发强度的分布。由所列各表可看出在1988年内太阳活动上升得很快:(1)联测各时段内每日射电流量密度平均值持续上升;(2)爆发的次数增加,复杂型爆发越来越多,表4中列出了一些结果。由表2可见与射电爆发共生的高能事件比例也不断增加,从年初的1/9增加至年未的5/8。图1为记录的某些爆发图形。自1988年末开始的北京天文台10厘米射电望远镜的更新工作,预计89年7—8月间完成,新的系统采用低噪声前置高放,集成微波器件,时间常数各为0.5秒及1毫秒  相似文献   

2.
本文介绍用“三波段太阳射电高时间分辨率同步观测系统”所观测到的1988年12月16日三波段(1420MHz、2840MHz、4000MHz)太阳射电大爆发中毫秒级精细结构的观测特征,指出太阳射电快速活动在射电爆发的不同阶段具有不同的特征,首先在爆发的上升沿出现2840MHz的毫秒尖峰辐射群,继而在1420MHz上出现毫秒级尖峰辐射群,并且还在以后的几个爆发次峰上陆续出现,在长达两小时的大爆发过程中,在4000MHz上始终未产生毫秒级尖峰辐射,这也反应了射电尖峰辐射现象存在着一定的带宽。特别引起注意的是毫秒级尖峰辐射群均出现在射电爆发的峰值附近,在其它时间的记录中尚未发现毫秒尖峰辐射。 三波段的秒级射电爆发曲线如图1所示。毫秒级精细结构如图2所示。由图2可见,单个尖峰辐射的持续随频率的减小而增加,2840MHz多为10—20ms,1420MHz多为30—170ms;所产生的尖峰辐射群强度不大,而且很少有孤立的尖峰;2840MHz尖峰辐射的强度一般为450—900sfu,1420MHz一般为500—1770sfu(1sfu=10~(-22)WM~(-2)Hz~(-1));还特别引起注意的是在2840MHz上当所出现的尖峰辐射群结束时,往往出现持续时间为100ms的流量下降现象,(此种现象在以往的观测中未曾见过),详见图2b和2c;关于事件尖峰辐射的丰度,仅对几个尖峰辐射群作了统计如下: 在1420M  相似文献   

3.
本文介绍了北京天文台观测到的太阳射电10厘米波段的毫秒级快速精细结构(FFS)中一类有长持续时间的尖峰(我们称毫秒时标记录上陡升陡降图形为“尖峰”,称秒级时标的记录上的陡升陡降图形为“脉冲”)群事件。这一类微波毫秒尖峰群(MMS)事件具有一系列显著的特点: 1)它在秒级时间常数的慢速记录上常常对应一8S型(持续时间小于1分钟的脉冲)的爆发。因而利用脉冲的频谱特性,对这一类微波爆发中的毫秒精细结构的特征及可能的机制进行探讨,以弥补目前只能在一个波段上观测FFS事件的缺陷。 2)这一类脉冲爆发具有从低频向高频的频漂(正的频漂),而且频漂的速率随频率带增加而增加。 3)脉冲的幅度在波长8—10厘米间受到强烈的衰减。 4)脉冲群中的每一脉冲的极大频率及起始频率从高频逐渐移向低频,意昧着激发源逐渐上升。估计上升速度约为50公里/秒。 5)这类脉冲常常出现在有δ型磁结构、最大磁场强度大于2500高斯的复杂活动区中,可能有不同级别的耀斑与之对应。 6)这类脉冲与硬X线爆发事件、分米波段快速频漂事件及“BLIPS”事件见文[7]有密切的关系。 7)这一类微波快速尖峰群事件可以解释为来自耀斑-爆发事件中形成的电子加速中心的快速非热电子流向下运动穿入一耀斑环激起的电子迴旋脉泽辐射。  相似文献   

4.
耀斑研究的时变结构在射电波段已进入亚秒甚至毫秒级时标。微波段的尖峰辐射有高至10~(15)K的亮温度,硬X射线爆发也可能与电子加速过程有密切关系。1981年5月北京天文台第一次在十厘米波段取得微波爆发毫秒级的精细结构。1983年开始国内联合成立太阳射电爆发高时间分辨率研究课题协调组,并决定建立全国性的观测网。各有关单位设备的配置及计划见表1。该联测网将有从约2厘米波长到21厘米波长的大于10:1的波段覆盖。爆发的不同时标结构可能来自不同的机制,与光学高时间分辨的同时观测可能取得重要的结果,来间接证实精细结构尖峰源的位置。北台正在更新2840MHz的1ms采样设备;研制时间分辨率达约10微秒的十厘米波段多通道偏振计,可以轮流在2600 60MHz及2600-60MHz上相距10MHz的两点上同时接收,预计89年底至90年初投入观测;另一研制的设备为高速采样六厘米波段强度干涉仪,可发现日面上有无角径大于0.01"源的存在。云台已有1420,2840及4000MHz三波段同步观测设备,并将增加2160MHz的设备。紫台将使用13.7毫米波段天线进行高灵敏度的毫米波爆发高时间分辨观测研究。北京大学正在研制21厘米波段快速采样自相关频谱仪。各波段、各种形式的高时间分辨率的观测设备用时间同步系统联系起来。联测网的资料可进行如下研  相似文献   

5.
本文详细列出1981年4月27日0808UT发生的日面边缘大爆发的射电观测特征,并作了有关射电爆发形态及微波频谱、非热电子能谱的初步分析。  相似文献   

6.
本文简要地叙述了1990年7月30日伴随日面2B级光学耀斑发生的射电爆发,在2840、2640、和1420MHz波段上同步观测结果,其中包括射电爆发在以上波段的秒级时间轮廓和毫秒级时间尺度的spike辐射活动.对它们的形态和频率特征作了简要分析,同时对spike辐射的迴旋电子脉塞增长率、相对辐射频宽和准周期振汤的某些特征及辐射源区的某些物理参数,作了进一步的分析和量级的估算.  相似文献   

7.
1989年8月12日至19日,AR5629活动区产生了一系列的射电爆发。以8月15日0300.0UT发生在日面西边缘(S20,W81)的微波爆发为最大。该微波事件有X1.0/SF的太阳X射线耀斑相伴随,并产生了射电Ⅳ型大爆发,引起了一系列的地球物理效应。然而,这次射电大爆发并没有毫秒级尖峰辐射相伴随。本文分析这次微波事  相似文献   

8.
本文提出了1981年4月27日日面西边缘耀斑以后的爆发环珥的H_a观测资料和分析.在这事件中,我们可以清楚地看到环的缠绕过程.从这些资料可看出环的运动与缠绕有紧密的联系.我们还观测到一些有趣的现象:在08~(h)29~(m)30~(s)和08~(h)33~(m)UT时在环顶(其高度约为2.6×10~4公里)分别出现持续时间约为1分钟的奇特的“吸收结构”,同时观测到3厘米波段的射电辐射强度相应有例外的下降,而8毫米和10厘米波段的射电辐射强度无此变化.  相似文献   

9.
云南天文台高分辨率射电频谱仪观测到10毫秒级变周期振荡,带宽约10MHz,叠加在一个持续时间约500ms的射电频谱上.在德国Weissenau的太阳射电频谱记录上找到了对应的爆发;同时SESC(美国空间环境服务中心)发表了同一时刻获得的245MHz总强度射电爆发记录;还在日面城到了相应的H_α亮点.  相似文献   

10.
1980年10月14日0542—0613—0734UT.,在位于日面S10W15的黑子区(M.W No.21811、AR2725)发生了一个3B级大耀斑。北京天文台的色球望远镜取得了比较完整的Hα观测资料,观测发现在耀斑爆发过程中存在喷焰(Spray)现象及扰动沿弧形轨迹运动的现象。北京天文台的3.2厘米(9395MHz),10.6厘米(2840MHz)总强度射电望远镜取得了完整的总辐射流量密度的时变曲线,参考云南天文台的8.2厘米及日本东京天文台2厘米,Tykw的15厘米,30厘米及S.G.D上的频谱资料对这一形态复杂的微波爆发作一初步的形态分析,与Hα资料作了比较,利用文献中的硬x线资料与射电资料作了初步的对比。  相似文献   

11.
王霖  谢瑞祥  汪敏  许春  刘玉英 《天文学报》2004,45(4):389-401
利用太阳射电宽带频谱仪(0.7-7.6GHz)于2001年10月19日观测到的复杂太阳射电大爆发,呈现出许多有趣的特征,结合NoRH(Nobeyama Radio Heliograph)的高空间分辨率射电成像观测及TRACE(Transition Region and Coronal Explorer)在远紫外(EUV)波段的高空间分辨率成像观测资料,分析了该爆发的射电频谱特征和微波射电源的演化以及它们与复杂的EUV日冕环系统的关系,该爆发是一个双带大耀斑的射电表征.前一部分以宽带(从厘米到米波)爆发为主,机制是回旋同步辐射,所对应的是环足源的辐射;后一部分以窄带(分米到米波)分米波爆发为主,机制是等离子体辐射和回旋共振辐射的联合,对应的是环顶源的辐射。  相似文献   

12.
快速射电暴是近几年观测到的一种在射电波段短暂出现的高能天体物理爆发现象。它们的光变曲线通常表现为单个脉冲轮廓,持续时间一般为若干毫秒,大部分峰值流量密度可达到央斯基量级。对快速射电暴研究概况进行了评述,系统描述了快速射电暴的观测进展,介绍了已提出的快速射电暴前身星物理模型及快速射电暴在天体物理领域中的应用等,也对快速射电暴的未来研究进行了展望。  相似文献   

13.
1987年5月19日UT 05~h50~m17~s至05~h50~m25~s云南天文台太阳射电点频式频谱仪收到了来自太阳微波辐射的谐波结构(Harmonic Structures)。这是目前世界上时间分辨率为1ms的频谱仪首次观测到。该频谱仪由1420MHz、2840MHz和3670MHz构成。  相似文献   

14.
1990年5月23日0400—0451UT期间在遥隔两地的南大天文台与北师大天文台和北京天文台用时间分辨率1s和10ms分别在波长3.2cm、2cm和10.6cm上进行了太阳射电爆发的同时观测.发现了短厘米波爆发中的双重准周期脉动现象.本文根据这些观测资料连同S.G.D.发表的有关射电、光学和软X射线(SXR)耀斑等数据,提出了一个在耀(斑)环内非热与热辐射过程中由于相互作用而触发Alfven波和快磁声波的振荡模型,用来解释太阳短厘米波爆发中相关性很强的双重准周期脉动的起因和观测特征,并由此计算出爆发源区的平均物理参量T,N,B值。  相似文献   

15.
云南天文台三架单频射电望远镜,工作频率分别为4000MHz、2800MHz和1420MHz,天线口径各为3.2米,2.5米和3米。能同时接收太阳射电和秒级和毫秒级总流量。辐射计的终端接在一个公共的YEE80微处理机上。信号经过调制器、混频器、中频放大器、检波器、低频放大器、同步积分器和同步解调器之后被分成两路、其秒级信号被送到接收机;毫秒级信号被送到A/D板。采样之后送到计算机,如果有毫秒结构计算机便贮存。 1988年12月16日收到一个特大的射电爆发,图1是经过衰减6dB之后的三个波段的秒级爆发曲线,其主要参数列在表1。图2给出了Goes卫星同期观测到的X射线及其质子流量。该爆有下列特征: 1、每条曲线有五个峰。2、相领峰之间的时间间隔近似相等,它们的准周期分别为12.5分、12.4分和12.5分。3、各条爆发曲线的第一个峰是尖的、陡的、复杂的,并带有亚峰。4、三条曲线第一峰上的大厂亚峰的平均周期分别为1.5分、1.2分和1.0分。 本文得到下列主要结果: (1)由表3给出的三波段峰—峰之间的时间差,得到射电大爆发期间,原区中心的运动。 (2) 源区的运动,牵动着“冻结”在等离子体中的日冕磁场,产生主峰的12.5分准周期振荡和亚峰的1.5分、1.2和1.0分的准周期振荡,是日冕环的整体行为。 (3)这次事件有IV型射电爆发相伴随,这  相似文献   

16.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

17.
在1989年3月至1990年4月间,我们对太阳射电辐射进行快速采样观测.发现三厘米波段射电爆发亦具有快速精细结构,时标尺度在0.1至2秒间。  相似文献   

18.
本文简要地介绍了发生于2545MHz和2645MHz频率上的一次与白光耀斑共生的微波射电大爆发。该爆发有很高的峰值流量,很高的偏振度和很复杂的偏振状态的变化.同时该爆发的第一主峰期间同时观测到色球层白光耀斑连续辐射。本文还简要地讨论了这次射电爆发与色球白光耀斑的时间演化关系及射电爆发在主峰期间偏振状态急剧变化的原因。  相似文献   

19.
从2004年10月起,国家天文台怀柔射电频谱仪增加了新的超高分辨率观测模式:在1.10~1.34 GHz频带其时间分辨率为1.25 ms,频率分辨率为4 MHz。报告了3个超高分辨率下观测到的太阳射电精细结构事件,包括射电尖峰辐射、鱼群结构和重叠的精细结构,在射电精细结构之后8~14 min,在米波段都发现射电II型爆发,3个事件的米波II型爆发(示踪着日冕激波)都有相关联的日冕物质抛射(Coronal Mass Ejection,CME)。  相似文献   

20.
本文简要地介绍了发生于2545MHZ和2645MHZ频率上的一次与白光耀斑共生的微波射电大爆发,该爆发有很高的峰值流量,很高的偏振和很复杂的偏振状态的变化,同时该爆发的第一主峰期间同时观测到色球层白光耀斑连续辐射,本文还简要地讨论了这次射电爆发与色球白光耀斑的时间演化关系及射电爆发在主峰期间偏期间偏振状态急剧变化的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号