首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
用氢氧稳定同位素评价闽江河口区地下水输入   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析闽江河口区降水、地表水和地下水的氢氧稳定同位素特征,揭示降水的环境同位素效应和地下水的形成演化规律,定量评价河口区多种水体的混合过程及地下水输入量。夏季的降水氢氧同位素组成相对贫化,呈现出降雨量效应。在δ18O与δD关系图上,闽江北岸基岩裂隙水、平原及丘陵区浅层地下水均落在福州降水线上,而南岸平原及丘陵区浅层地下水大部分落在福州降水线右下方,其拟合线与降水线交点与5~9月农灌期降水氢氧同位素加权值接近,表明北岸地下水主要来自降水补给,而南岸地下水同时接受灌溉水和降水补给,并在入渗过程中经历了不同程度的蒸发作用。闽江河口段除接受两岸地下水补给外,局部河段还接受断裂带裂隙水补给。将线性端元混合模型、数字高程模型和地下水文分析法结合起来定量评价地下水的输入和各水体的混合过程,结果显示,在河口段淡水区,地下水混合比率上限为8.8%,其中包括0.4%的断裂带裂隙水;在河口段淡咸水混合区,淡水(河水、地下水)和海水的混合比为53:47,其中地下水的保守混合比率为1.7%;枯水期闽江河口段地下水保守输入量为87.0 m3/s,是闽江径流量的12.8%。  相似文献   

2.
洞庭湖湖区降水-地表水-地下水同位素特征   总被引:8,自引:0,他引:8  
为探明洞庭湖湖区水体稳定同位素时间和空间上的变化规律,弄清各水体间的相互关系,分别在2012年4月和8月对区域内具有代表性的采样点进行了地表水和地下水的采样。通过对样品进行D、18O同位素分析,结合全球大气降水同位素监测网(GNIP)公布的1988—1992年间长沙降水同位素数据,发现湖区年内受不同盛行风影响,降水及地表水的同位素存在较大的季节性差异,4月份同位素富集,8月份贫化。此外,河水、湖水同位素也呈现明显的空间差异。两个时期地表水的水线斜率均小于当地降水线,地表水在两个时期均存在蒸发作用。虽然地表水和地下水的来源均为大气降水,但与地表水相比,地下水同位素季节变化较小,地下水接受地表水补给是一个较为长期的过程。  相似文献   

3.
An isotopic and chemical study was conducted on precipitation, spring water, streams, groundwater wells and submarine groundwater discharge (SGD) to constrain the recharge areas and flow paths of SGD. The isotopic values of precipitation were used to determine the local meteoric water lines (LMWLs) of Rishiri Island. The d-excess values of precipitation showed seasonal variation, with lows of 2.5‰ in the summer and highs of 24.2‰ in the winter. The d-excess values of spring water, streams, groundwater wells and SGD ranged from 12.5‰ to 23.0‰, indicating that the resulting waters were a mix of two seasons of precipitation. The isotopic composition of the groundwater wells sampled along the coast and SGD showed more negative values than that of the spring water sampled along the coast. This indicated that SGD recharged at high altitudes and flowed into the sea. The isotopic and chemical composition of SGD indicated unidirectional flow from land to sea.  相似文献   

4.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

5.
为探明淮河下游地区地表水与地下水稳定同位素的组成特征,于2020年11月对该区域进行代表性采样,共采集地表水样13个,地下水样82个.结合全球大气降水同位素监测网(GNIP)公布的南京降水同位素数据,根据最小二乘法得出当地大气降水线(LMWL)方程为:δD=8.49δ18O+17.71,其斜率和截距高于全球大气降水线(...  相似文献   

6.
This study was based on the analysis of isotopic compositions of hydrogen and oxygen in samples from precipitation, groundwater and stream water. In addition, parts of groundwater samples were dated by carbon-14 and tritium. These data are integrated to provide other views of the hydrologic cycle in the Hsinchu-Miaoli groundwater district. The groundwater district is principally composed of Pleistocene and Holocene aquifers. The Pleistocene aquifers are highly deformed by folding and faults into small sub-districts with areas of only tens of square kilometers. These aquifers are exclusively recharged by local precipitation. The Holocene aquifers cover narrow creek valleys, only tens of meters in thickness. The local meteoric water line (LMWL), constructed from rainfall samples in the Hsinchu Science Park, is described by the equation δD=8.02δ18O+10.16, which agrees with the global meteoric water line. In addition, the precipitation isotopic compositions can be categorized into two distinct end members: typhoon type and monsoon type. The groundwater isotopic compositions are perfectly located on an LMWL and can be considered a mixture of precipitations. Based on the mass balance of isotopic compositions of oxygen and hydrogen, infiltration is more active in the rainy season with depleted isotopic compositions. The amount of infiltration during May–September is roughly estimated to comprise at least 55% of the whole year’s recharge. The isotopic compositions of stream water are expressed by a regression equation: δD=7.61δ18O+9.62, which is similar to the LMWL. Although precipitation isotopic compositions are depleted during summer time, the isotopic compositions contrarily show an enriched trend in the upstream area. This is explained by the opposite altitude effect on isotopic compositions for typhoon-related precipitations.  相似文献   

7.
The isotopic characteristics of hydrogen and oxygen of various water bodies in the Yinchuan plain were investigated. A total of 131 water samples were collected and another 99 water samples collected by other scholars and the International Atomic Energy Agency were referred to in the study. The stable isotopic compositions of precipitation and lake waters are influenced by dry climate and strong evaporation of the area, and the slope of local meteoric water line and lake water line are smaller than that of global meteoric water line. The isotopic compositions of the Yellow River water are significantly lower than the weighted averages of local atmospheric precipitation and are controlled by the runoff of upstream areas. The isotopes of phreatic water suggest that the single phreatic water is predominantly recharged by the bedrock fissure water of Helan Mountain, while the phreatic water in multilayer structure area is recharged by multiple sources. The confined waters in the area may be recharged under cooler climate conditions than the present, which makes the heavy isotopes depleted. The 3H contents of various water bodies are in the following order: the Yellow River water > multilayer phreatic water > single phreatic water > lake water > drainage ditch water > upper confined water > lower confined water. This is in accordance with the recharge, discharge and circulation conditions of the specific water bodies. The isotope compositions of waters in the Yinchuan plain are mainly affected by external water recharge rather than local precipitation. This study is meaningful and helpful in understanding the groundwater flow systems and water cycle in the area.  相似文献   

8.
The geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system in the northern part of the Baltic Artesian Basin (BAB) illustrates how continental glaciations have influenced groundwater systems in proglacial areas. The aquifer system contains water that has originated from various end-members: recent meteoric water, glacial meltwater and relict Na-Cl brine. The saline formation water that occupied the aquifer system prior to the glacial meltwater intrusion has been diluted by meltwaters of advancing-retreating ice sheets. The diversity in the origin of groundwater in the aquifer system is illustrated by a wide variety in δ18O values that range from −11‰ to −22.5‰. These values are mostly depleted with respect to values found in modern precipitation in the area. The chemical and isotopic composition of groundwater has been influenced by mixing between waters originating from different end-members. In addition, the freshening of a previously saline water aquifer due to glacial meltwater intrusion has initiated various types of water-rock interaction (e.g. ion exchange, carbonate mineral dissolution).  相似文献   

9.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

10.
赤水林区旱季雾水对地表径流的水量贡献   总被引:2,自引:0,他引:2       下载免费PDF全文
为探明赤水林区旱季地表径流补给来源组成以及雾水对该地区的水量贡献,于2014年12月对区域内水量大、易进入的3条瀑布径流进行了采样,样品包括雾水、泉水和溪水。通过对水样进行D、18O同位素分析,并与遵义的降水同位素数据对比,发现赤水林区旱季雾水的D、18O明显比降水富集;泉水和溪水具有相似的氢氧同位素组成,都落在11月与12月的降水同位素之间,且都分布于遵义地区降水线附近。赤水林区旱季地表径流主要受地下水补给,地下水是前期间断性的降水与持续不断的雾水的混合。雾水间接补给地表径流,是旱季地表径流重要的水量来源。在四洞沟、十丈洞和燕子岩这几个区域的平均补给量达到了24.1%(D同位素的计算结果),18O同位素的计算结果为20.0%。  相似文献   

11.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

12.
宁夏南部月亮山西麓地下水化学特征研究   总被引:18,自引:1,他引:18       下载免费PDF全文
通过对宁夏南部月亮山西麓水文地质条件的研究,分析了研究区内含水层中地下水化学组分的特征以及各组分含量之间的相互依存关系,认为含水介质的矿物成分对该区内地下水组分影响显著,地下水同位素等分析显示,该区地下水的补给主要为现代大气降水,认为地下水化学组分的成因主要是溶滤作用和蒸发作用。  相似文献   

13.
The study area is located in the border of the high and low folded zone having a semi-arid climate area. This study initiated in 2009–2010, deals essentially with the investigation of the stable isotope (18O and deuterium 2H) as well as radioactive isotope represented by tritium 3H in rain, carbonate springs, intergranular aquifer, and surface water in order to investigate the source and relative ages of the groundwater and to show the influence of the altitude variations of the isotope composition. In this study and for the first time in the area, a local meteoric water line have been drawn with an empirical formula δ 2H?=?7.7δ 18O?+?14.4. The δ 18O–altitude effect was determined using isotopic data for several samples taken from groundwater and surface water; it was approximated at ?0.79?‰/100 m for the entire area of the study. The output of the tritium concentrations in the springs and water well samples revealed to the conclusion that the values closely resembles to the present time tritium concentration in precipitation.  相似文献   

14.
The isotopic composition and parameters for deuterium excess of brines, which were sampled in the Si-chuan Basin, show obvious regularities of distribution. The brine isotopic composition shows distinct two systems of marine and terrestrial deposits, with the Middle Triassic strata as the boundary. Brine hydrogen isotopic composition of marine deposits is lower while oxygen isotopic composition is higher than that of the SMOW, respectively, indicating that the brines were derived from seawater with different evaporating degrees at different times. From the Sinian strata, up to the Cambrian, Permian Maokou Formation and the Triassic Jialingjiang Formation, the δD values of brines tend to become relatively positive with the strata becoming younger. Brines of terrestrial deposits are considered to have been derived from precipitation and their isotopic composition is close to the globe meteoric water line (GMWL). Brines of transitional deposits between marine and terrestrial ones (the Upper Triassic Xujiahe Formation) have δD and δ18O values falling between the two end members of marine deposit brines and precipitation, indicating that the brines are a mixture of precipitation and vaporing seawater. Water samples from the brine-bearing strata of different ages show various deuterium excesses (d) with an evident decreasing trend as the age of strata gets older and older. Brine-bearing strata of the Triassic Leikoupo-Jialingjiang Formation, the Permian Maokou Formation, the Cambrian and Sinian strata are all carbonate rocks which have experienced intensive water/rock reaction and the deuterium excess essentially changes with time. All brine-bearing-strata surrounding the basin or faults, as well as those brine wells exploited for resources, have been obviously influenced by the precipitation supply. Therefore, the deuterium excesses of their brines have increased to different extents, depending on the amount of involvement of meteoric water. The variation and distribution of d values of the brines from different Triassic strata are related to the embedded depth of the strata. The deuterium excesses of brines become lower with increasing burial depth of the strata.  相似文献   

15.
The environmental isotopes such as deuterium and oxygen-18 and the deuterium excess values have been used to assess groundwater recharge sources and their dynamics in Khan Younis City in the Gaza Strip in Palestine. Three isotopic lines for the relationship between δ2H and δ18O were used in the assessment. These lines are the global meteoric water line, the local meteoric water line and the groundwater evaporation line. The δ2H, δ18O and D-excess values indicate that deuterium and oxygen-18 isotopes originated in the groundwater from groundwater mixing with rainfall and other water sources; the groundwater in the area recharged from rainfall from a distant source that came from the Mediterranean Sea and from other sources such as wastewater, irrigation return flow and saline water.  相似文献   

16.
The characteristics of δD and δ18O in precipitation, groundwater and surface water have been used to understand the groundwater flow system in the Ordos Plateau, north-central China. The slope of the local meteoric water line (LMWL) is smaller than that of the global meteoric water line (GMWL), which signifies secondary evaporation during rainfall. The distribution of stable isotopes of precipitation is influenced by temperature and the amount of precipitation. The lake water is enriched isotopically due to evaporation and its isotopic composition is closely related to the source of recharge and location in the groundwater flow systems. River water is enriched isotopically, indicating that it suffers evaporation. The deep groundwater (more than 150?m) is depleted in heavy isotopes relative to the shallow groundwater (less than 150?m), suggesting that deep groundwater may have been recharged during the late Pleistocene and early Holocene, when the climate was wetter and colder than at present. All groundwater samples plot around the LMWL, implying groundwater is of meteoric origin. Shallow groundwater has undergone evaporation and the average evaporation loss is 53%. There are two recharge mechanisms: preferential flow, and the mixture of evaporated soil moisture and subsequent rain.  相似文献   

17.
A study of the hydrogeochemical processes in the Morsott-El Aouinet aquifer was carried out with the objective of identifying the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation of groundwater. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. The ionic speciation and mineral dissolution/precipitation was calculated by WATEQF package software. The increase in salinity is related to the dissolution and/or precipitation processes during the water–rock interaction and to the cationic exchange reactions between groundwater and clay minerals. The isotopic analysis of some groundwater samples shows a similarity with the meteoric waters reflect their short residence time and a lowest evaporation phenomenon of infiltrated groundwater.  相似文献   

18.
Hydrogeochemistry and isotopes were used to understand the origin and geochemical evolution in the Habor Lake Basin, northwestern China. Groundwater samples were taken, and the isotopic compositions δD, δ18O and major ions were analyzed. The groundwater can be divided into three types: the Quaternary groundwater, the shallow Cretaceous groundwater and the deep Cretaceous groundwater. The groundwater chemistry is mainly controlled by the feldspar weathering and dolomite weathering, the dissolution of Glauber’s salt, and cation exchange. Chemistry of lake water is mainly controlled by evaporation and precipitation. The stable isotopes of oxygen and hydrogen in groundwater cluster along the local meteoric water line, indicating that groundwater is of meteoric origin. Comparing with shallow groundwater, deep groundwater is depleted in heavy isotopes indicating that deep groundwater was recharged during late Pleistocene and Holocene, during which the climate was more wetter and colder than today.  相似文献   

19.
Deuterium, oxygen-18 and chloride were analyzed for 84 samples from deep and shallow wells, precipitation and the river White Nile to investigate groundwater recharge/discharge relations in the semi-arid central Sudan. Spatial and vertical variation in isotopic signature and chloride concentration in the groundwater show similar patterns and indicate local recharge and evaporative discharge. Progressive decrease in isotopic composition along the regional groundwater flow path demonstrates aquifer continuity down the NW–SE recharge-discharge path. Isotope-heavy recharged water progressively mixes with lighter older groundwater formed during cooler and humid conditions in the late Pleistocene. However, evaporative fractionation in the flow path’s final reach in the southeast re-enriches the isotopic composition and suggests evaporative loss of groundwater as the plausible discharge mechanism. Chloride concentration increases down the gradient from the recharge area and reaches its peak in the discharge zones indicating: lack of recharge from direct infiltration down the gradient, evaporation and prolonged rock/water interaction. Head differences and increased isotopic concentration in the vicinity of the White Nile suggest recharge from the river from subsurface flow. Reduced chloride content and relatively heavier isotopic composition in the deep groundwater beneath the wadi of Khor Abu Habil indicate recharge from the streambed into the deep aquifer.  相似文献   

20.
Hydrogen and oxygen stable isotope in water bodies is a widely used tracer in hydrological process studies. In order to provide a basis for stable isotopic characteristics in different water bodies at the high mountainous area of northwestern Tibetan Plateau, samples for river water, groundwater, soil water, and plant water were collected from 10 sites in the Qilian Mountains during July and August 2015, and then analyzed for δ18O and δD, respectively. Results indicated that the stable isotope values of soil water were mostly plotted below the global meteoric water line (GMWL), which suggested that evaporation made heavy isotope in soil water enriched. The stable isotope values of soil water were quite different in the top soil layer, but tended to be uniform in the deep soil layer. Furthermore, the stable isotope difference of plant water is related to climatic conditions, water isotopes utilized by plant, plant species, growing season, and so on. Additionally, the variation of δ18O values for river water and groundwater relatively coincided with each other, and this showed the recharge sources of above two water bodies may be consistent. The stable isotope values of river water and groundwater were mainly plotted on the upper left of GMWL, and the lower level of isotopic fractionation due to weak evaporation may accountable for this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号