首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200–600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must be investigated individually by means of detailed mapping and modelling of high resolution geophysical data to assess further the geothermal potential of the region.  相似文献   

2.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

3.
The Cappadocia region, located in Central Turkey, is characterized by widespread lava flows and volcanoclastic deposits dating from Miocene to Quaternary. Gravity and aeromagnetic anomalies of the region appear to present similar high and low amplitude regions, although the aeromagnetic anomalies exhibit a rather complex pattern which is thought to be caused by remanent magnetization. The low-pass filtered aeromagnetic map shows a deep-seated magnetic anomaly which may be linked to the widespread volcanic activity at the surface. The pseudogravity transformation of the upward continued anomaly has been constructed. The pseudogravity anomaly demonstrates some form of clockwise rotation. This anomaly was modelled by means of a three-dimensional method. The top and bottom of the body are at 6.3km and 11km (including the flight height) from the ground surface, respectively. This deep body is ellipsoidal and extends along an E-W direction, which is in line with the regional stress direction deduced from GPS measurements. A new mobilistic dynamo-tectonic system appears to explain the body’s E-W elongation. The modelled body may be the source for the inferred geothermal energy of the region. Magnetic measurements were carried out on oriented rock samples collected from outcrops of ignimbrites and basalts, providing directions and intensities of remanent magnetization, susceptibilities and Koeningsberger (Q) ratios. Standard deviations of remanent directions of the Natural Remanent Magnetization (NRM) display a wide scatter implying unreliability of the surface data. Reduction to pole (RTP) transformation of magnetic anomalies was successful with the induced magnetization angle despite the complex pattern of magnetic anomalies.  相似文献   

4.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

5.
Heat flow in the Sohm abyssal plain is measured to be 53 mW/m2 at an age of 163 Ma. This is 25% higher than predicted by conductive cooling models, even though the sediment-corrected basement depth of 6.5 km at this location is normal for its age. An analysis of existing heat flow, depth and geoid anomalies in the northwest Atlantic shows that there is little correlation between heat flow and depth throughout the entire region. Depth and geoid are clearly related to the Bermuda swell while the associated heat flow anomaly, once adjusted for variations with age, is limited to 5 mW/m2 and only decays to the south. This means that the Bermuda swell is probably not caused by extensive thermal reheating within the lithosphere, but instead by dynamic uplift at its lower boundary due to the convective upwelling of a mantle plume. The regionally high heat flow in the northwest Atlantic may be a thermal remanent of previous plumes which passed beneath this region early in its history. Therefore, depth and heat flow anomalies from this region cannot be used to provide constraints on steady-state parameters of the lithosphere, such as the presence or absence of a long-term boundary layer at its base.  相似文献   

6.
In this paper, aeromagnetic and gravity anomalies obtained from the General Directorate of Mineral Research and Exploration were subjected to upward continuation to 3?km from the ground surface to suppress shallow effects and to expose only regional, deep sources. Then, a reduction to pole (RTP) map of aeromagnetic anomalies was produced from the 3?km upward continued data. A sinuous boundary to the south of Turkey is observed in the RTP map that may indicate the suture zone between the Anatolides and African/Arabian Plates in the closure time of the Tethys Ocean. The sinuous boundary can be correlated with the recent palaeo-tectonic maps. The southern part of the sinuous boundary is quite different and less magnetic in comparison with the northern block. In addition, maxspots maps of the aeromagnetic and gravity anomalies were produced to find out and enhance the boundaries of tectonic units. Crustal thickness, recently calculated and mapped for the western Turkey, is also extended to the whole of Turkey, and the crustal thicknesses are correlated with the previous seismological findings and deep seismic sections. The average crustal thickness calculations using the gravity data are about 28?km along the coastal regions and increase up to 42?km through the Iranian border in the east of Turkey. Density and susceptibility values used as parameters for construction of two-dimensional (2D) gravity and magnetic models were compiled in a table from different localities of Turkey. 2D models indicate that all of the anomalous masses are located in the upper crust, and this could be well correlated with the earthquakes which occurred at shallow depths.  相似文献   

7.
Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.  相似文献   

8.
On the evolution of the geothermal regime of the North China Basin   总被引:1,自引:0,他引:1  
Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m−2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m−2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.  相似文献   

9.
Based on the data of geo-temperature and thermophysical parameters of rocks in the Kuqa Depression and the Tabei Uplift, northern flank of the Tarim Basin, in terms of the analytical solution of 1-D heat transfer equation, the thermal structure of the lithosphere under this region is determined. Our results show that the average surface heat flow of the northern flank of the Tarim Basin is 45 mW/m2, and the mantle heat flow is between 20 and 23 mW/m2; the temperature at crust-mantle boundary (Moho) ranges from 514℃ to 603℃ and the thermal lithosphere where the heat conduction dominates is 138-182 km thick. Furthermore, in combination with the P wave velocity structure resulting from the deep seismic sounding profile across this region and rheological modeling, we have studied the local composition of the lithosphere and its rheological profile, as well as the strength distribution. We find that the rheological stratification of the lithosphere in this region is apparent. The lowermost of the lower crust is ductile; however,the uppermost of the mantle and the upper and middle parts of the crust are both brittle layers,which is typically the so-called sandwich-like structure. Lithospheric strength is also characterized by the lateral variation, and the uplift region is stronger than the depression region. The lithospheric strength of the northem flank of the Tarim Basin decreases gradually from south to north; the Kuqa Depression has the lowest strength and the south of the Tabei Uplift is strongest.The total lithospheric strength of this region is 4.77× 1012-5.03 × 1013 N/m under extension, and 6.5 × 1012-9.4× 1013 N/m under compression. The lithospheric brittle-ductile transition depth is between 20 km and 33 km. In conclusion, the lithosphere of the northern flank of the Tarim Basin is relatively cold with higher strength, so it behaves rigidly and deforms as a whole, which is also supported by the seismic activity in this region. This rigidity of the Tarim lithosphere makes it little deform interior, but only into flexure under the sedimentation and tectonic loading associated with the rapid uplift of the Tianshan at its northern margin during the Indian-Eurasian continental collision following the Late Eocene. Finally, the influences of factors, such as heat flow, temperature,crustal thickness, and especially basin sediment thickness, on the lithospheric strength are discussed here.  相似文献   

10.
The Sichuan Basin is a superimposition basin composed of terrestrial and marine sediments that is well known for its abundant petroleum resources. Thermal history reconstruction using paleogeothermal indicators, including vitrinite reflectance and thermochronological data, shows that different structural subsections of the Sichuan Basin have experienced various paleogeothermal episodes since the Paleozoic. The lower structural subsection comprising the Lower Paleozoic to Middle Permian (Pz-P2 successions experienced a high paleogeothermal gradient (23.0–42.6°C/km) at the end of the Middle Permian (P2, whereas the upper structural subsection comprising Late Permian to Mesozoic strata underwent a relatively lower paleogeothermal gradient (13.2–26.9°C/km) at the beginning of the denudation (Late Cretaceous or Paleocene in the different regions). During the denudation period, the Sichuan Basin experienced a successive cooling episode. The high paleogeothermal gradient resulted from an intensive thermal event correlated to the Emeishan mantle plume. The heat flow value reached 124.0 mW/m2 in the southwestern basin near the center of the Emeishan large igneous province. The low geothermal gradient episode with heat flow ranging from 31.2 to 70.0 mW/m2 may be related to the foreland basin evolution. The cooling event is a result of the continuous uplift and denudation of the basin.  相似文献   

11.
We present a set of 39 new determinations of heat flow and radiogenic heat production for several different geological environments in the State of New Hampshire (U.S.A.). With the extensive data set now available for the state, the linear relation of heat flow and heat production appears as a very useful generalization for the study of the heat flow field of a geological province. Our measurements indicate that the vertical distribution of radiogenic heat production is similar in plutonic and metasedimentary rocks. Our data are compatible with the linear relationship established earlier by F. Birch and his co-workers in 1968. Young granites are markedly enriched in radioactive elements and those which do not outcrop are revealed by anomalies in the general relation of heat flow versus radioactivity.Heat flow is high for plutons by low elsewhere. The mean heat flow through metasedimentary formations is 1.15 μcal/cm2 s (48 mW/m2), a value near the mean heat flow for old cratons. The lowest heat flow measured is 0.76 μcal/cm2 s (32 mW/m2) for a unit poor in radioactivity. The heat flow field grades smoothly into the low heat flow regions of the Canadian Shield.The New Hampshire region is in thermal equilibrium: its heat flow is in secular equilibrium with the heat generated by crustal sources and that supplied from the mantle. In this area, the thermal perturbations due to orogenic events decrease below the detection level in less than 200–275 Ma. The thickness of the layer which is thermally affected during continent-continent collision-type orogenies cannot be greater than about 190 km.  相似文献   

12.
Heat flow values were calculated from direct measurements of temperature and thermal conductivity at thirteen sites in the Arkansas-Missouri Ozark Plateau region. These thirteen values are augmented by 101 estimates of heat flow, based on thermal conductivity measurements and temperature gradients extrapolated from bottom-hole temperatures. The regional heat flow profile ranges from 9 mW m−2 to over 80 mW m−2, but at least two distinct thermal regimes have been identified. Seven new heat flow determinations are combined with three previously published values for the St. Francois Mountains (SFM), a Precambrian exposure of granitic and rhyolitic basement rocks, average 47 mW m−2. Radioactive heat production of 76 samples of the exposed rocks in the SFM averages 2.4 μW m−2 and a typical continental basement contribution of 14 mW m−2 is implied. Conversely, the sedimentary rock sequence of the plateau is characterized by an anomalously low heat flow, averaging approximately 27 mW m−2. Groundwater transmissivity values that are based on data from 153 wells in deep regional aquifers demonstrate an inverse relationship to the observed heat flow patterns. The areas of high transmissivity that correspond to areas of low total heat flux suggest that the non-conservative vertical heat flow within the Ozark sedimentary sequence can be attributed to the effects of groundwater flow.  相似文献   

13.
Heat flow values from some additional locations in the Cenozoic Cambay Basin have been determined. Together with the previously published data, they show that the heat flow is moderate (55–67 mW/m′) in the southern part of the basin towards Broach and Ankleswar, and that there is a clear trend of high heat flow (75–93 mW/m2; range of average values for six different, widely separated, locations) in a part of the basin located north of the Mahisagan river between Cambay and Mehsana along a stretch of about 140 km. Conductive steady state geotherms, calculated using observed high surface heat flow values and appropriate models show, beneath the Cambay-Mehsana area, a large degree of melting in the lower crust and upper mantle, which is not suggested by the existing geodata. Considering this aspect and taking into account the existence of a normal crust about 37 km thick below the Cambay-Tarapur and Ahmedabad-Mehsana blocks (as obtained from deep seismic soundings), it has been inferred that the heat flow anomaly is due to transient thermal perturbations introduced from tectonic activity in the form of magmatic intrusions. A careful analysis of heat flow, gravity and other related geodata point out and support the possibility of a Miocene/Pliocene basic intrusive body at a depth of around 10 km under the Cambay-Mehsana area. Further, the consistent trend of the thermal and gravity fields indicates thinning of the postulated intrusive body from Cambay towards Mehsana.  相似文献   

14.
Heat flow data from the eastern Mediterranean region indicates an extensive area of low heat flow, spreading over the whole basin of the Mediterranean east of Crete (Levantine Sea), Cyprus, and northern Egypt. The average of the marine heat flow measurements in the Levantine Sea is 25.7±8.4 mW/m2, and the heat flow on Cyprus is 28.0±8.0 mW/m2. The estimated values of heat flow in northern Egypt range from 38.3±7.0 to 49.9±9.3 mW/m2, apparently with no consistent trend. To the east, on the coast of Israel, the heat flow values increase, ranging from 36.6±22.4 to 56.7±14.2 mW/m2 along a SSE trend. The trend apparently correlates with an increase in crustal thickness, which is about 23 km at the north-west base of the Nile-Delta-cone, and close to 40 km beneath Israel.Contribution No. 157, Department of Geology, Kent State University, Kent, Ohio, USA.  相似文献   

15.
The Central Indian region has a complex geology covering the Godavari Graben, the Bastar Craton (including the Chhattisgarh Basin), the Eastern Ghat Mobile Belt, the Mahanadi Graben and some part of the Deccan Trap, the northern Singhbhum Orogen and the eastern Dharwar Craton. The region is well covered by reconnaissance‐scale aeromagnetic data, analysed for the estimation of basement and shallow anomalous magnetic sources depth using scaling spectral method. The shallow magnetic anomalies are found to vary from 1 to 3 km, whereas magnetic basement depth values are found to vary from 2 to 7 km. The shallowest basement depth of 2 km corresponds to the Kanker granites, a part of the Bastar Craton, whereas the deepest basement depth of 7 km is for the Godavari Basin and the southeastern part of the Eastern Ghat Mobile Belt near the Parvatipuram Bobbili fault. The estimated basement depth values correlate well with the values found from earlier geophysical studies. The earlier geophysical studies are limited to few tectonic units, whereas our estimation provides detailed magnetic basement mapping in the region. The magnetic basement and shallow depth values in the region indicate complex tectonic, heterogeneity, and intrusive bodies at different depths, which can be attributed to different thermo‐tectonic processes since Precambrian.  相似文献   

16.
The residual aeromagnetic total field intensity anomalies in central Anatolia were calculated from the regional aeromagnetic anomalies surveyed by the Mineral Research and Exploration (MTA) of Turkey. The residual aeromagnetic data were analyzed to produce Curie point estimates by the method of OKUBO et al. (1985). The Curie point depth of central Anatolia varies from 7.9 km and 22.6 km. The shallowest Curie point depths were observed around the Cappadocia and Erciyes Volcanic complexes in central Anatolia. A good correlation was deduced between the Curie point depths and the heat-flow data measured previously, which is most certainly important for the geothermal resources of the region. The shallow Curie point depths also correlate well with the hot spring locations in central Anatolia.  相似文献   

17.
Tectono-thermal modeling of the Yinggehai Basin,South China Sea   总被引:1,自引:0,他引:1  
Based on the observed data, the average value of surface heat flow in the Yinggehai Basin is calculated and it turns out to be 84.1 mW/m2. The thermal evolution of the basin since the Cenozoic era has been attempted by tectono-thermal modeling. Three-phase extension made the basin become hotter and hotter, reaching its climax in paleo-temperature history since 5.2 Ma. And nowadays, the basin is in the heat flow decreasing period. During the Cenozoic era, the basement heat flow remained at 50–70 mW/m2 all the time. This is related to the degree of each extension phase, stretching rate mode and also the limited basin scale. Modeling results also show that, the surface heat flow is controlled mainly by the basement heat flow, and less than 20% comes from radiogenic heat production in the sediments of the basin  相似文献   

18.
Aeromagnetic data were analyzed to determine the Curie point depth (CPD) by power density spectral and three-dimensional inversion methods within and surrounding Death Valley in southern California. We calculated the CPD for 0.5° regions using 2D power density spectral methods and found that the CPDs varied between 8 and 17 km. However, the 0.5° region may average areas that include shallow and deep CPDs, and because of this limitation, we used the 3D inversion method to determine if this method may provide better resolution of the CPDs. The final 3D model indicates that the depth to the bottom of the magnetic susceptible bodies varies between 5 and 23 km. Even though both methods produced roughly similar results, the 3D inversion method produced a higher lateral resolution of the CPDs. The shallowest CPDs occur within the central and southern Death Valley, Panamint Valley, Coso geothermal field and the Tecopa hot springs region. Deeper (>15 km) CPDs occur over outcropping granitic and Precambrian lithologies in the Panamint Range, Grapevine Mountains, Black Mountains and the Argus Range. The shallowest CPD occurs within the central Death Valley over a possible seismically imaged magma body and slightly deeper values occur within the Panamint Valley, southern Death Valley and Tecopa Hot Springs. The shallow CPD values suggest that partially molten material may also be found in these latter regions. The CPD computed heat flow values for the region suggest that the entire area has high heat flow values (>100 mW m?2), on the other hand, locally extremely high values (>200 mW m?2) occur within the Panamint Valley, the southern and central Death Valley and Tecopa Hot Springs region. These locally high heat flow values may be related to midcrustal magma bodies; but additional geophysical experiments are needed to determine if the magma bodies exist.  相似文献   

19.
We have obtained a suite of 42 closely spaced, acoustically navigated, heat flow measurements on well-sedimented crust of anomaly M0 age (109 Ma) in the northwest Atlantic Ocean (25°N, 68°W; 950 km south of Bermuda). The mean and standard deviation of the values obtained are 1.13 HFU (μcal/cm2 s) (47.3 mW/m2) and 0.05 HFU (2.1 mW/m2), respectively. Some of the variability is accounted for by refractive effects of the basement topography. Drill core data and our modelling suggest that the thermal conductivity contrast between sediments and basement rocks in this region is less than a factor of 1.6. The mean heat flow is close to the 1.1 HFU (46 mW/m2) predicted by both the plate and boundary layer cooling models of the oceanic lithosphere. This is the first detailed comparison with theoretical cooling models on old Atlantic Ocean crust. Since the difference in surface heat flow (0.15 HFU) predicted by the two cooling models for the oldest observed oceanic lithosphere (180 Ma) is also not much larger than the range of uncertainty in our observations, discrimination between the two models on the basis of surface heat flow data alone may prove difficult.  相似文献   

20.
Twenty-five new heat flow measurements made in the Gulf of California are presented. All the values except two at the mouth of the Gulf and two in the Sal si Puedes basin are high. The values ranged from 2.0 to greater than 10 μcal/cm2 sec (82 to > 420 mW/m2) with eight values greater than 5.2 (210 mW/m2). Due to high rates of sedimentation throughout the Gulf, the actual heat flow, in many cases, may be up to 25% greater than that recorded.Most of the heat flow stations are concentrated in the Farallon and Guaymas basins and show a marked increase towards the central deeps, where new crust is believed to be forming. The heat flow values in the Farallon basin show a sharp peak 10–15 km southeast of the central depression while those in the Guaymas basin peak in the depression.The heat flow profiles across the Guaymas and Farallon basins are remarkably similar to those observed on other well sedimented spreading centers such as the northern portion of the Explorer trough. Thus they may provide evidence that the crust is being created by an axially symmetric intrusion process with a major loss of heat due to hydrothermal circulation. The absence of magnetic anomalies in the Gulf has been attributed to the supposed presence of large grains in the intruded basalt. Large grains form by the slow cooling of the basalt under a layer of sediment. Prominent magnetic anomalies have been observed on the northern portion of the Explorer trough. Observational data suggest that the thermal processes at this ridge axis and the center of the Farallon basin are identical. We suggest that further careful study is needed in the Gulf before the slow cooling model is accepted as an explanation for the attenuation of the magnetic anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号