首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Cut-off lows (COLs) are significantly associated with many convective events and anomalous regional climate in the Northeast China. By using 49-year NCEP/NCAR reanalysis data, COL events are detected and tracked by an objective and automatic method based on synoptic concept model. Based on this dataset and daily rain-gauge records in Northeast China during 1979–2005, seasonal climatology of COLs and associated precipitation patterns over Northeast China are investigated. Most COLs have a short lifetime of less than a week and have a spatial size ranging from 500 to 1,000 km, with slight seasonal differences. Temporal variation of COL occurrence exhibits a seasonal cycle, with a peak in summer, and considerable interannual variability. The COLs tend to occur more frequently over the northern Northeast China Plain, and the center for maximum frequency shows a zonal oscillation, with an extension to continent in summer and a shift to western North Pacific coast in winter. Most COLs form to the east of Lake Baikal and decay over the western North Pacific coast. COLs are apt to move along east or southeast passages around the year, and tracks are relatively more complicated in warm seasons. About a quarter of annual mean precipitation over Northeast China is associated with COLs. Moreover, COL-associated precipitation contributes greatly to total precipitation in northern and northwestern parts of Northeast China, and the ratios of COL contribution are stronger during spring and autumn than in summer.  相似文献   

2.
 Monthly sea surface temperature anomalies (SSTA) at near-global scale (60 °N–40 °S) and May to October rainfall amounts in West Africa (16 °N–5 °N; 16 °W–16 °E) are first used to investigate the seasonal and interannual evolutions of their relationship. It is shown that West African rainfall variability is associated with two types of oceanic changes: (1) a large-scale evolution involving the two largest SSTA leading eigenmodes (16% of the total variance with stronger loadings in the equatorial and southern oceans) related to the long-term (multiannual) component of rainfall variability mainly expressed in the Sudan–Sahel region; and (2) a regional and seasonally coupled evolution of the meridional thermal gradient in the tropical Atlantic due to the linear combination of the two largest SSTA modes in the Atlantic (11% with strong inverse loadings over the northern and southern tropics) which is associated with the interannual and quasi-decadal components of regional rainfall in West Africa. Linear regression and discriminant analyses provide evidence that the main July–September rainfall anomalies in Sudan–Sahel can be detected with rather good skills using the leading (April–June) or synchronous (July–September) values of the four main oceanic modes. In particular, the driest conditions over Sahel, more marked since the beginning of the 1970s, are specifically linked to the warm phases of the two global modes and to cold/warm anomalies in the northern/southern tropical Atlantic. Idealized but realistic SSTA patterns, obtained from some basic linear combinations of the four main oceanic modes appear sufficient to generate quickly (from mid-July to the end of August) significant West African rainfall anomalies in model experiments, consistent with the statistical results. The recent negative impact on West African rainfall exerted by the global oceanic forcing is primarily due to the generation of subsidence anomalies in the mid-troposphere over West Africa. When an idealized north to south SSTA gradient is added in the tropical Atlantic, strong north to south height gradients in the middle levels appear. These limit the northward excursion of the rainbelt in West Africa: the Sahelian area experiences drier conditions due to the additive effect (subsidence anomalies+latitudinal blocking) while over the Guinea regions wet conditions do not significantly increase, since the subsidence anomalies and the blocking effect act here in opposite ways. Received: 26 June 1997 / Accepted: 3 October 1997  相似文献   

3.
Summary This paper is to promote a further understanding of the interdecadal mode of the South Pacific. With this focus, we will specifically aim at better understanding the difference between interannual and interdecadal SSTA modes over South Pacific. We define the difference of the normalization area-averaged SSTA in the southern extratropical Pacific (160° W–110° W, 40° S–25° S) and the south subpolar Pacific (150° W–110° W, 60° S–45° S) as the South Pacific interdecadal index (I spd). It is found that the interannual mode is more coherent than the interdecadal mode in the central and eastern tropical Pacific, and the interdecadal mode is significant only during boreal winter (DJF). The interdecadal variation of SSTA firstly occurring in the extratropic South Pacific propagates to the western boundary of the South Pacific, then moves northeast to cross the equator, and finally reaches the central tropic Pacific. It takes about 8 years to propagate from southeast subtropical Pacific to the north hemisphere. The previous studies have suggested the mechanism of waves in the subsurface in the South Pacific. Our study also highlights the Rossby waves play important roles in linkage between the extratropics-tropics South Pacific SSTA on interdecadal time scales. Moreover, the paper shows that the interdecadal variability originated in the extrotropic southeast Pacific is mainly induced by interannual variability in the tropic Pacific.  相似文献   

4.
Summary The authors perform an exploratory analysis on the effect of the timing of the stratospheric vortex breakup in the occurrence of cut-off low systems (COLs) in the Northern Hemisphere. The first multidecadal Northern Hemisphere COLs database (Nieto et al, 2005) covering a 41 year-long period (1958–1998) was used in the analysis. The dates of stratospheric vortex breakup were obtained using two different approaches recently purposed in literature based in potential vorticity and zonal winds. An analysis of differences of COLs occurrences for the five earlier (later) breakup years showed that, at latitudes lower than 45° N, COLs are more frequent for earlier vortex years during the following spring and summer. The monthly analysis showed that, in general, the significant differences start in May lasting until September, being especially relevant for the European sector, the area with the highest rates of COLs occurrence in the Northern Hemisphere.  相似文献   

5.
Summary The Iberian Peninsula is one of the regions in the world with higher occurrence of cut-off low systems (COL). The aim of this paper is to analyse the weather events (rainfall and cloudiness layer) associated to COLs in the Iberian Peninsula with tools not previously used: (a) the use of the new multidecadal COLs database developed by Nieto et al (2005) that permit us to study a 41 years period (1958–1998), (b) the checking of the expected weather events (rainfall and cloudiness layer) associated with COLs in a conceptual model (Winkler et al, 2005) and (c) the extensive use of radiosoundings to analyse convective instability in areas inside and close to the COL. Two points of view are used to make the analysis: (1) a source oriented method, when a particular COL is followed and its associated precipitation and cloudiness is analysed over four quadrants in which Iberia was divided and (2) a receptor oriented method, when the precipitation associated to COLs is analysed in given areas, defined by patterns of precipitation. Results reveal that the precipitation and cloudiness patterns associated to COLs in the conceptual model reproduce quite well the main characteristics found over the Iberian Peninsula. The generalized idea that most of the COLs produce intense convective rainfall is show to be misleading. Convective phenomena are important usually when the centre of the COL is located on the Mediterranean region. Most of the rainfall associated with COLs comes from the baroclinic shield; specially in cases located over the west half of the Iberian Peninsula. It is shown that nearly 30% of COLs do not induce any rainfall; most of them located in the southern half of the Peninsula, and mainly during autumn. Only 30% of COLs produce generalized rainfall over the whole analysed territory, being most of them (about 90%) located over the western half of the Iberian Peninsula.  相似文献   

6.
Summary In this study, Principal Component Analysis (PCA) has been used to identify the major modes of the outgoing long-wave radiation data for the period (1979–2002) during the Indian monsoon period (June–September), using seasonal mean values over the Indian region covering 143 grid points (5° N–35° N and 70° E–95° E at 2.5° Longitude–Latitude intervals. The five principal components explain up to 98.0% of the total variance. The first principal component explains 60% of the total variance with a pronounced variation in the outgoing long-wave radiation over the region 10° N to 25° N. It appears that the major reason for the monsoon variability is the intensity and associated fluctuations in the two major semi-permanent seasonal systems. This is largely indicative of strong seasonal shift of the major area of cloudiness associated with convergence zone. The second principal component explaining 20% of the total variance exhibits higher positive component loadings along 25° N and east of 80° E. The possible reason for this could be the synoptic systems such as monsoon depression/lows over the north bay and trough/vortices off the west-coast in the Arabian sea.  相似文献   

7.
Upper-level cut-off lows in southern South America   总被引:2,自引:0,他引:2  
Summary This paper presents a statistical study of the spatial and seasonal distribution and duration of cut-off low systems over the southern South American region based on the NCEP- NCAR reanalysis data for the period 1979–1988. Cut-off lows were first objectively determined as minimum geopotential values at the 250 hPa level and then subjectively imposing a cut-off circulation and a cold core. A total of 171 cut-off low events were detected, being more frequent in austral autumn followed by winter, spring and summer. There is a preferential region of occurrence in spring and autumn located between 68°–80° W and 30°–45° S. The Pacific area showed the greatest frequency of occurrence followed by the Atlantic and the continental areas. Most of the cut-off lows last 2 or 3 days (around 90% of the cases) though there is a tendency of the continental events to be longer. The cut-off low event developed upwind the Andes on 22–28 September 1986 was selected as a case study. Low-level cold air advection was the main forcing of the deepening of the upper level low system.  相似文献   

8.
Summary Monthly rainfall data for 135 stations for periods varying from 25 to 125 years are utilised to investigate the rainfall climatology over the southeast Asian monsoon regime. Monthly rainfall patterns for the regions north of equator show that maximum rainfall along the west coasts occurs during the summer monsoon period, while the maximum along the east coasts is observed during the northeast monsoon period. Over the Indonesian region (south of the equator) maximum rainfall is observed west of 125 °E during northern winter and east of 125 °E during northern summer. The spatial relationships of the seasonal rainfall (June to September) with the large scale parameters – the Subtropical Ridge (STR) position over the Indian and the west Pacific regions, the Darwin Pressure Tendency (DPT) and the Northern Hemisphere Surface Temperature (NHST) – reveal that within the Asian monsoon regime, not only are there any regions which are in-phase with Indian monsoon rainfall, but there are also regions which are out-of-phase. The spatial patterns of correlation coefficients with all the parameters are similar, with in-phase relationships occurring over the Indian region, some inland regions of Thailand, central parts of Brunei and the Indonesian region lying between 120° to 140 °E. However, northwest Philippines and some southern parts of Kampuchea and Vietnam show an out-of-phase relationship. Even the first Empirical Orthogonal Function of seasonal rainfall shows similar spatial configuration, suggesting that the spatial correlation patterns depict the most dominant mode of interannual rainfall variability. The influence of STR and DPT (NHST) penetrates (does not penetrate) upto the equatorial regions. Possible dynamic causes leading to the observed correlation structure are also discussed. Received October 10, 1996 Revised February 25, 1997  相似文献   

9.
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations. Received: 17 April 2000 / Accepted: 17 August 2000  相似文献   

10.
Summary Climatological statistics of extreme temperature events over Kenya are established from the analysis of daily and monthly maximum temperatures for a representative station (Nairobi Dagoretti Corner) over the period 1956–1997. The months of June to August were shown to be the coldest with a mean monthly maximum temperature of less than 22 °C. Seasonal (June to August) mean maximum temperature was 21.5 °C. Using this seasonal mean temperature for the period 1967–1997 delineated 1968 as the coldest year in this series and 1983 as the warmest year. Spectral analysis of the seasonal data, for both the coldest and the warmest years, revealed that the major periods were the quasi-biweekly (10 days) and the Intraseasonal Oscillations (23 days). Secondary peaks occurred at periods of 4–6 and 2.5–3.5 days. A temperature threshold of 16.7 °C during July was used to define cold air outbreaks over Nairobi. This threshold temperature of 16.7 °C was obtained from the mean July maximum temperature (20.9 °C) minus two standard deviations. Notable trends include a decrease in the frequency of station-days, between 1956 and 1997, with temperatures less than 16.7 °C during July. Surface pressure patterns indicate that the origin of the cold air is near latitude 25° S and to the east of mainland South Africa. The cold air near 25° S is advected northwards ahead of the surface pressure ridge. Received July 19, 1999 Revised January 11, 2000  相似文献   

11.
 This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120 °W–60 °W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968–1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30 °N–20 °S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20–30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north–south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa. Received: 14 April 1998 / Accepted: 24 December 1998  相似文献   

12.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

13.
Summary One of the greatest challenges in tropical weather forecasting is the rapid intensification (RI) of the tropical cyclone (TC), during which its one-minute maximum sustained wind speed increases at least 30 knots per 24 hours. Here we identify and elucidate the climatic conditions that are critical to the frequency and location of the RI on annual, intraseasonal, and interannual time scales. Whereas RI and formation share common environmental preferences, we found that the percentage of TCs with RI varies annually and from year to year. In August, only 30% of TC actually experiences RI, in contrast to the annual maximum of 47% in November. The proportion of RI in July–September is higher during El Ni?o years (53%) than the corresponding one in the La Ni?a years (37%). Three climate factors may contribute to the increase in the proportion of RI: the southward shift in the monthly or seasonal mean location of the TC formation, the increase in the low-level westerly meridional shear vorticity, and the decrease in northerly vertical shear. When the mean latitude of TC formation increases, the mixed-layer heat content decreases while TC’s inertial stability increases; both are more detrimental to the RI than to TC formation because the RI requires large amount of latent heat energy being extracted efficiently from the ocean mixed layer and requires accelerated low-level radial inflow that carries latent heat reaching the inner core region. We further demonstrate that the RI frequency in the Philippine Sea and South China Sea can be predicted 10 to 30 days in advance based on the convective anomalies in the equatorial western Pacific (5° S–5° N, 130°–150° E) on intraseasonal time scale. The Ni?o 3.4 SSTA in June is a potential predictor for the peak TC season (July–September) RI activity in the southeast quadrant of the western North Pacific (0–20° N, 140–180° E). The RI is an essential characteristic of category 4 and 5 hurricanes and super typhoons because all category 4 and 5 hurricanes in the Atlantic basin and 90% of the super typhoons in the western North Pacific experience at least one RI process in their life cycles. Over the past 40 years, the annual total of RI in the western North Pacific shows pronounced interdecadal variation but no significant trend. This result suggests that the number of supper typhoons has no upward trend in the past 40 years. Our results also suggest that when the mean latitude, where the tropical storms form, shifts southward (either seasonally or from year to year) the proportion of super typhoon or major hurricane will likely increase. This shift is determined by large scale circulation change rather than local SST effects. This idea differs from the current notion that increasing SST can lead to more frequent occurrence of category 4 or 5 hurricanes through local thermodynamics. Corresponding author’s address: Bin Wang, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, Hawaii 96822, USA (also visiting professor at the Ocean University of China)  相似文献   

14.
Summary Spatial scales of variability in seasonal rainfall over Africa are investigated by means of statistical and numerical techniques. In the statistical analysis spatial structure is studied using gridded 0.5° resolution monthly data in the period 1948–1998. The de-seasonalized time series are subjected to successive principal component (PC) analysis, allowing the number of modes to vary from 10 to 24, producing cells of varying dimension. Then the original rainfall data within each cell are cross-correlated (internal), then averaged and compared with the adjacent cells (external) for each PC solution. By considering the ratio of internal to external correlation, the spatial scales of rainfall variability are evaluated and an optimum solution is found whose cell dimensions are approximately 106 km2. The aspect of scale is further studied for southern Africa by consideration of numerical model ensemble simulations over the period 1985–1999 forced with observed sea surface temperatures (SSTs). The hindcast products are compared with observed January to March (JFM) rainfall, based on a station-satellite merged analysis of precipitation (CMAP) data at 2.5° resolution. Validations for different sized areas indicate that cumulative standardized errors are greatest at the scale of a single grid cell (104 km2) and decrease 20–30% by averaging over successively larger areas (106 km2).  相似文献   

15.
Summary The west coast of the Indian peninsula receives very heavy rainfall during the summer Monsoon (June–September) season with average rainfall over some parts exceeding 250 cm. Heavy rainfall events with rainfall more than 15 cm day−1 at one or more stations along the west coast of India occur frequently and cause considerable damage. A special observational programme, Arabian Sea Monsoon Experiment, was carried out during the monsoon season of 2002 to study these events. The spatial and temporal distributions of intense rainfall events, presented here, were used for the planning of this observational campaign. The present study using daily rainfall data for summer monsoon season of 37 years (1951–1987) shows that the probability of getting intense rainfall is the maximum between 14° N–16° N and near 19° N. The probability of occurrence of these intense rainfall events is high from mid June to mid August, with a dip in early July. It has been believed for a long time that offshore troughs and vortices are responsible for these intense rainfall events. However, analysis of the characteristics of cloud systems associated with the intense rainfall events during 1985–1988 using very high resolution brightness temperature data from INSAT-IB satellite shows that the cloud systems during these events are characterized by large spatial scales and high cloud tops. Further study using daily satellite derived outgoing longwave radiation (OLR) data over a longer period (1975–1998) shows that, most of these events (about 62%) are associated with systems organized on synoptic and larger scales. We find that most of the offshore convective systems responsible for intense rainfall along the west coast of India are linked to the atmospheric conditions over equatorial Indian Ocean.  相似文献   

16.
Summary By analyzing 12-year (1979–1990) 200 hPa wind data from National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, we demonstrate that the intraseasonal time scale (30–60 days) variability of the Tropical Easterly Jet (TEJ) reported in individual case studies occurs during most years. In the entrance region (east of ∼70° E), axis of the TEJ at 200 hPa is found along the near equatorial latitudes during monsoon onset/monsoon revivals and propagates northward as the monsoon advances over India. This axis is found along ∼5° N and ∼15° N during active monsoon and break monsoon conditions respectively. Examination of the European Centre for Medium Range Weather Forecasts reanalysis wind data also confirms the northward propagation of the TEJ on intraseasonal time scales. During the intraseasonal northward propagations, axis of the TEJ is found about 10°–15° latitudes south of the well-known intraseasonally northward propagating monsoon convective belts. Because of this 10°–15° displacement, axis of the TEJ arrives over a location about two weeks after the arrival of the monsoon convection. Systematic shifting of the locations by convection, low level monsoon flow and TEJ in a collective way during different phases of the monsoon suggests that they all may be related.  相似文献   

17.
Summary Variability of Indian summer monsoon rainfall is examined with respect to variability of surface wind stresses over Indian Ocean. The Indian Ocean region extending from 40°–120° E, and 30° S–25° N, has been divided into 8 homogeneous subregions, viz (1) Arabian Sea (AS), (2) Bay of Bengal (BB), (3) West-equatorial Indian Ocean (WEIO), (4) Central-equatorial Indian Ocean (CEIO), (5) East-equatorial Indian Ocean (EEIO), (6) South-west Indian Ocean (SWIO), (7) South-central Indian Ocean (SCIO), and (8) South-east Indian Ocean (SEIO). The period of study extends for 13 years from 1982–1994. Monthly NCEP surface wind stress data of five months – May through September, have been used in the study. The spatial variability of seasonal and monthly surface wind stresses shows very low values over CEIO and EEIO and very high values over AS, SWIO, and SEIO regions. On the seasonal scale, all India summer monsoon rainfall (AISMR) shows concurrent positive relationships with the surface wind stresses over AS, BB, WEIO, SWIO and SCIO and negative relationships with the surface wind stresses over EEIO and SEIO. The relationships of AISMR with the surface wind stresses over AS and WEIO are significant at 5% level. The concurrent relationships between monthly surface wind stresses over these 8 oceanic sub-regions and monthly subdivisional rainfalls over 29 sub-divisions have been studied. The rainfalls over the subdivisions in the central India and on the west coast of India are found to be significantly related with surface wind stresses over AS, SWIO, SCIO. Monthly subdivisional rainfalls of four subdivisions in the peninsular India show negative relationship with BB surface wind stresses. May surface wind stresses over AS, BB, WEIO, CEIO and SWIO have been found to be positively related with ensuing AISMR. The relationship with AS wind stresses is significant at 5% level and hence may be considered as a potential predictor of AISMR. Received May 21, 2001 Revised October 8, 2001  相似文献   

18.
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。  相似文献   

19.
 The potential climatic consequences of increasing atmospheric greenhouse gas (GHG) concentration and sulfate aerosol loading are investigated for the years 1900 to 2100 based on five simulations with the CCCma coupled climate model. The five simulations comprise a control experiment without change in GHG or aerosol amount, three independent simulations with increasing GHG and aerosol forcing, and a simulation with increasing GHG forcing only. Climate warming accelerates from the present with global mean temperatures simulated to increase by 1.7 °C to the year 2050 and by a further 2.7 °C by the year 2100. The warming is non-uniform as to hemisphere, season, and underlying surface. Changes in interannual variability of temperature show considerable structure and seasonal dependence. The effect of the comparatively localized negative radiative forcing associated with the aerosol is to retard and reduce the warming by about 0.9 °C at 2050 and 1.2 °C at 2100. Its primary effect on temperature is to counteract the global pattern of GHG-induced warming and only secondarily to affect local temperatures suggesting that the first order transient climate response of the system is determined by feedback processes and only secondarily by the local pattern of radiative forcing. The warming is accompanied by a more active hydrological cycle with increases in precipitation and evaporation rates that are delayed by comparison with temperature increases. There is an “El Nino-like” shift in precipitation and an overall increase in the interannual variability of precipitation. The effect of the aerosol forcing is again primarily to delay and counteract the GHG-induced increase. Decreases in soil moisture are common but regionally dependent and interannual variability changes show considerable structure. Snow cover and sea-ice retreat. A PNA-like anomaly in mean sea-level pressure with an enhanced Aleutian low in northern winter is associated with the tropical shift in precipitation regime. The interannual variability of mean sea-level pressure generally decreases with largest decreases in the tropical Indian ocean region. Changes to the ocean thermal structure are associated with a spin-down of the Atlantic thermohaline circulation together with a decrease in its variability. The effect of aerosol forcing, although modest, differs from that for most other quantities in that it does not act primarily to counteract the GHG forcing effect. The barotropic stream function in the ocean exhibits modest change in the north Pacific but accelerating changes in much of the Southern Ocean and particularly in the north Atlantic where the gyre spins down in conjunction with the decrease in the thermohaline circulation. The results differ in non-trivial ways from earlier equilibrium 2 × CO2 results with the CCCma model as a consequence of the coupling to a fully three-dimensional ocean model and the evolving nature of the forcing. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

20.
Summary This paper investigates the warming trend and interannual variability of surface air temperatures in the Malaysian region during the period 1961–2002. The trend analyses show that most regions in Malaysia experience warming over the period at comparable rates to those in regions surrounding the Bay of Bengal. The regions of Peninsular Malaysia and northern Borneo experience warming rates of between 2.7–4.0 °C/100 years. However, the warming rates are lower in the south-western region of Borneo. The interannual variability of Malaysian temperature is largely dominated by the El Ni?o-Southern Oscillation (ENSO). Regardless of the warming trends, all regions in Malaysia experience uniform warming during an El Ni?o event, particularly during the October–November–December (OND) and the January–February–March (JFM) periods. This uniform warming is associated with the latent heat released from the central eastern Pacific region and forced adiabatic subsidence in the Maritime Continent during an El Ni?o event. During its early development period i.e. during the July–August–September (JAS) season, the El Ni?o’s impact on the Malaysian temperatures is relatively weak compare to its influence during the OND and JFM seasons. However, the warming continues to the April–May–June (AMJ) season although during this period the anomalous conditions in the eastern central Pacific have begun or have returned to normal. The Indian Ocean Dipole (IOD) mode exerts an influence on Malaysian temperatures. When it co-occurs with ENSO, it tends to weaken the ENSO influence particularly during an OND period. However, it appears to have an appreciable influence only during an AMJ period when it occurs in the absence of an ENSO event. Despite the strong influence of the ENSO, the warming rates during the 42-year period appears to be least affected by interannual variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号