首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Izu Peninsula in central Japan, the northern tip of the Izu‐Bonin arc, hosts numerous epithermal Au–Ag vein deposits of low‐sulfidation style. All have similar vein textures, mineralogy, and alteration. Geochemical data from fluid inclusions in vein quartz, the mineralogy and mineral chemistry of alteration, and stable isotope data indicate that auriferous hydrothermal activity occurred under subaerial conditions. The K–Ar ages of auriferous vein minerals are <1.5 Ma, indicating that the mineralization took place after extensive submarine volcanism for the host rocks. These observations suggest that Au–Ag mineralization was synchronous with the development of an extensional regime of the Izu block after its collision with the Honshu arc after 1.5 Ma. This collision resulted in the shifting of the Izu block far from the trench to the rear position, and the subduction of the Izu block along the Suruga trough to the west and along the Sagami trough to the east. The reararc position of the Izu block and double subduction resulted in crustal extension, upwelling of asthenospheric mantle, and tholeiitic magmatism reflected by mafic dyke swarms and subsequent monogenetic volcanic activity in the Izu peninsula. The timing of the Au mineralization in the Izu Peninsula during the beginning of lithospheric extension is similar to that of the Sado Au–Ag deposit on Sado island in the Japan Sea. Two mineralization events coincide with extensive tholeiitic mafic volcanism and injections of dyke swarms related to the back‐arc opening of the Japan Sea. The geological setting of the Au–Ag mineralization in Izu and Sado is also similar to that of the epithermal Au–Ag deposits in northern Nevada, where mineralization was contemporaneous with crustal extension and tholeiitic mafic magmatism derived from the asthenospheric mantle. This study suggests that epithermal Au mineralization at shallow crustal depths is a product of large‐scale lithospheric evolution.  相似文献   

2.
中亚造山带东部岩浆热液矿床时空分布特征及其构造背景   总被引:1,自引:0,他引:1  
中亚造山带东部是古亚洲洋构造域、鄂霍茨克洋构造域和古太平洋构造域复合叠加区域,矿产资源丰富。本文收集2000—2014年公开发表文献中岩浆热液矿床约1 200个同位素年龄数据,整理出201个较为可靠的年龄数据,通过数字化编图,揭示成矿的时空分布特征及形成背景。结果显示:中亚造山带东部成矿作用始于寒武纪,出现6个重要成矿期:510~473、373~330、320~253、250~210、210~167、155~100 Ma。510~473 Ma(峰值507 Ma),矿床主要分布在大兴安岭—小兴安岭—张广才岭和北山地区,零星发育热液脉型和斑岩型铁铜金钨矿床,与古亚洲洋开始俯冲及微陆块碰撞拼合有关。373~330 Ma(峰值372Ma),矿床主要分布在南蒙古奥尤陶勒盖地区,发育超大型斑岩型铜金矿床,形成于古亚洲洋俯冲环境。320~253 Ma,矿床主要分布在大兴安岭南段,发育少量斑岩型铜矿床和造山型金矿床;其中,298 Ma在大兴安岭南段首次出现以钼为主的斑岩型矿床,指示该区板块俯冲增生向拼贴转变逐渐过渡。250~210 Ma(峰值244 Ma),在蒙古—鄂霍茨克造山带东侧额尔古纳—中蒙古地块主要形成斑岩型铜矿床,可能与蒙古—鄂霍茨克洋俯冲有关;以东地区,主要在大兴安岭南段和辽远地块形成斑岩型钼矿床,在张广才岭发育岩浆熔离型铜镍矿床,反映了古亚洲洋闭合后伸展环境。210~167 Ma(峰值170 Ma),在蒙古—鄂霍茨克造山带西侧乌兰巴托西北部发育造山型-斑岩型金矿床,其东侧额尔古纳地区形成斑岩型铜钼矿床,可能与蒙古—鄂霍茨克洋俯冲碰撞有关;在吉黑东部—张广才岭—小兴安岭—大兴安岭,发育斑岩型钼铜矿床和矽卡岩型铅锌钨金矿床组合,可能属于古太平洋板块向西俯冲成矿体系。155~100 Ma(峰值136 Ma),中亚造山带东部整体处于伸展环境;其中,155~120 Ma在额尔古纳地区主要发育浅成低温热液型银铅锌矿床和造山型金矿床,大兴安岭北段发育斑岩型钼矿床,可能反映了额尔古纳地区和大兴安岭北段受蒙古—鄂霍茨克洋碰撞后伸展环境控制,而在吉黑东部形成浅成低温热液型金矿床,大兴安岭南段发育热液脉型-矽卡岩型锡矿床,可能受古太平洋板块向北俯冲弧后伸展的控制;120~100 Ma沿着华北克拉通和佳蒙陆块边缘发育浅成低温热液型-斑岩型金钼矿床。本研究综合岩浆热液矿床时空分布和矿床类型,进一步揭示了古亚洲洋构造域控制中亚造山带东部古生代成矿作用持续到晚二叠世(到早三叠世),并在晚三叠世叠加古太平洋构造域成矿体系,而额尔古纳—中蒙古地块成矿作用在三叠纪开始主要受蒙古—鄂霍茨克洋构造域限定,并持续到早白垩世早期。  相似文献   

3.
Kyushu Island, Japan, is located at the junction of the Southwest Japan arc and the Ryukyu arc. There are two major late Cenozoic epithermal gold-silver provinces in Kyushu, which are termed the Northern and Southern provinces. The provinces are characterized by: 1) Pliocene volcanism dominated by calc-alkaline andesite, followed by Quaternary volcanism including extrusion of both calc-alkaline and tholeiitic magmas; 2) formation of extensional grabens; 3) Pliocene to Pleistocene mineralization, which was dominated by abundant low sulfidation (LS) epithermal deposits with a few high sulfidation (HS) examples. The two epithermal gold-silver provinces have evolved differently since about 5 Ma; the Northern province has exhibited diminished hydrothermal activity from the Pliocene to Pleistocene, whereas the Southern province has witnessed increased hydrothermal activity mainly in easterly and northerly directions. Changes of tectonic setting from the Pliocene to Pleistocene account for the variable trends in epithermal gold deposit formation. Westward oblique subduction of the Philippine Sea plate beneath the Southwest Japan arc caused development of the Hohi graben and arc-related volcanism at about 6 Ma. This was associated with widespread LS mineralization in and surrounding the Hohi graben, as is represented by the Bajo and Taio deposits. The subduction of the relatively buoyant Kyushu-Palau ridge during the early Pliocene strengthened the coupling between the slab and overriding Ryukyu arc, leading to polygenetic andesite volcanism with associated HS (Kasuga, Iwato, and Akeshi) and LS (Kushikino) mineral deposits forming in the Southern province. A change of the subduction direction of the Philippine Sea plate, from west to north-northwest in the early Pliocene, increased the orthogonal convergence rate between the Southwest Japan arc and the Philippine Sea plate, resulting in a decrease of volcanic and hydrothermal activity in the Hohi graben of the Northern province. The more northerly subduction of the Philippine Sea plate shifted the locus of the Kyushu-Palau ridge subduction northward, resulting in underplating of the older (85–60 Ma), negatively buoyant Amami basin oceanic slab in the Southern province, rather than continued subduction of the young (27–15 Ma), buoyant Shikoku basin slab. This replacement caused steepening of the slab angle and slab-rollback in the Southern province, which was associated with regional extension, an eastward shift of the Ryukyu volcanic front, and development of the Kagoshima and Shimabara grabens, as well as the Okinawa trough. Rhyolite and basalt volcanism, in addition to andesite volcanism, have occurred since 2 Ma in the area of the Ryukyu back arc; coincident LS mineralization at Hishikari and Ohkuchi was affiliated with the rhyolite volcanism. Another change of the subduction direction of the Philippine Sea plate to the northwest occurred at 2–1 Ma. The forearc sliver of the Southwest Japan arc shifted westward, in association with right-lateral strike-slip faulting along the Median tectonic line, due to the increase of the westward convergence rate. This shift resulted in shortening and cessation of graben development in the Hohi area, restricting the subsequent volcanism and related hydrothermal activity to the central part of the graben.  相似文献   

4.
Duobaoshan is the largest porphyry-related Cu-Mo-Au orefield in northeastern(NE)Asia,and hosts a number of large-medium porphyry Cu(PCDs),epithermal Au and Fe-Cu skarn deposits.Formation ages of these deposits,from the oldest(Ordovician)to youngest(Jurassic),have spanned across over 300 Ma.No similar orefields of such size and geological complexity are found in NE Asia,which reflects its metallogenic uniqueness in forming and preserving porphyry-related deposits.In this study,we explore the actual number and timing of magmatic/mineralization phases,their respective magma genesis,fertility,and regional tectonic connection,together with the preservation of PCDs.We present new data on the magmatic/mineralization ages(LA-ICP-MS zircon U-Pb,pyrite and molybdenite Re-Os dating),whole-rock geochemistry,and zircon trace element compositions on four representative deposits in the Duobaoshan orefield,i.e.,Duobaoshan PCD,Tongshan PCD,Sankuanggou Fe-Cu skarn,and Zhengguang epithermal Au deposits,and compiled published ones from these and other mineral occurrences in the orefield.In terms of geochronology,we have newly summarized seven magmatic phases in the orefield:(1)Middle-Late Cambrian(506-491 Ma),(2)Early and Middle Ordovician(485-471 Ma and~462 Ma),(3)Late Ordovician(450-447 Ma),(4)Early Carboniferous and Late-Carboniferous to Early Permian(351-345 and 323-291 Ma),(5)Middle-Late Triassic(244-223 Ma),(6)Early-Middle and Late Jurassic(178-168 Ma and~150 Ma),and(7)Early Cretaceous(~112 Ma).Three of these seven major magmatic phases were coeval with ore formation,including(1)Early Ordovician(485-473 Ma)porphyry-type Cu-Mo-(Au),(2)Early-Middle Triassic(246-229 Ma)porphyry-related epithermal Au-(Cu-Mo),and(3)Early Jurassic(177-173 Ma)Fe-Cu skarn mineralization.Some deposits in the orefield,notably Tongshan and Zhengguang,were likely formed by more than one mineralization events.In terms of geochemistry,ore-causative granitoids in the orefield exhibit adakite-like or adakite-normal arc transitional signatures,but those forming the porphyry-/epithermal-type Cu-Mo-Au mineralization are largely confined to the former.The varying but high Sr/Y,Sm/Yb and La/Yb ratios suggest that the ore-forming magmas were mainly crustal sourced and formed at different depths(clinopyroxene-/amphibole-/garnet-stability fields).The adakite-like suites may have formed by partial melting of the thickened lower crust at 35-40 km(for the Early Ordovician arc)and>40 km(for the Middle-Late Triassic arc)depths.The Early Jurassic Fe-Cu skarn orecausative granitoids show an adakitic-normal arc transitional geochemical affinity.These granitoids were likely formed by partial melting of the juvenile lower crust(35-40 km depth),and subsequently modified by assimilation and fractional crystallization(AFC)processes.In light of the geological,geochronological and geochemical information,we proposed the following tectonometallogenic model for the Duobaoshan orefield.The Ordovician Duobaoshan may have been in a continental arc setting during the subduction of the Paleo-Asian Ocean,and formed the porphyry-related deposits at Duobaoshan,Tongshan and Zhengguang.Subduction may have ceased in the latest Ordovician,and the regional tectonics passed into long subsidence and extension till the latest Carboniferous.This extensional tectonic regime and the Silurian terrestrial-shallow marine sedimentation had likely buried and preserved the Ordovician Duobaoshan magmatic-hydrothermal system.The south-dipping Mongol-Okhotsk Ocean subduction from north of the orefield had generated the Middle-Late Triassic continental arc magmatism and the associated Tongshan PCD and Zhengguang epithermal Au mineralization(which superimposed on the Ordovician PCD system).The Middle Jurassic closure of Mongol-Okhotsk Ocean in the northwestern Amuria block(Erguna terrane),and the accompanying Siberia-Amuria collision,may have placed the Paleo-Pacific subduction system in NE China(including the orefield)under compression,and formed the granodiorite-tonalite and Fe-Cu skarn deposits at Sankuanggou and Xiaoduobaoshan.From the Middle Jurassic,the consecutive accretion of Paleo-Pacific arc terranes(e.g.,Sikhote-Alin and Nadanhada)onto the NE Asian continental margin may have gradually distant the Duobaoshan orefield from the subduction front,and consequently arc-type magmatism and the related mineralization faded.The minor Late Jurassic and Cretaceous unmineralized magmatism in the orefield may have triggered mainly by the far-field extension led by the post-collisional(Siberia-Amuria)gravitational collapse and/or Paleo-Pacific backarc-basin opening.  相似文献   

5.
Epithermal deposits in North Xinjiang, NW China   总被引:23,自引:0,他引:23  
The North Xinjiang region (NW China) is an important part of the Central Asia Orogenic Belt, situated at the junction of Siberia, Tarim and Kazakhstan plates. It is an area characterized by multiple stages of Phanerozoic continental growth, during which several porphyry and epithermal systems were formed. The relationship of these mineral systems to the geodynamic evolution of the region has not yet been well understood. In this paper, we list the main geological characteristics of 21 significant epithermal precious and base metal deposits in North Xinjiang, and classify them into high-sulfidation and low-sulfidation styles, with the latter being predominant. We have selected seven epithermal deposits representing different styles formed under different tectonic regimes and discuss their geology and geochemistry in some detail. The deposit-scale geology and geochemistry of epithermal systems in North Xinjiang are essentially similar to those in other parts of the world. All epithermal deposits in North Xinjiang are hosted in volcanic rocks with ages ranging from Devonian to Triassic, with the Early Carboniferous volcanic sequences being the most important, followed by the Permian and Triassic. The Devonian–Early Carboniferous host rocks belong to the calc-alkaline series that developed in pre-collisional arc-back-arc basin systems; whereas the Permian–Triassic host volcanic rocks of shoshonite series formed in post-subduction regimes. Available isotopic ages of these epithermal systems cluster in two periods: Early Carboniferous (>320?Ma) and Late Carboniferous–Triassic (320–220?Ma), reflecting two metallogenic episodes that occurred during subduction-related accretion and post-subduction collision regimes, respectively. Accordingly, three groups of epithermal deposits in North Xinjiang can be recognized as (1) pre-collisional deposits without or with negligible collisional-related modification, (2) deposits formed in collision regime and (3) ore systems strongly overprinted by fluid flow in post-subduction collision regime.  相似文献   

6.
The world-class Imiter silver deposit, in the Anti-Atlas Mountains of Morocco, is a Neoproterozoic epithermal vein deposit genetically associated with a felsic volcanic event, and formed within a regional extensional tectonic regime. Rhyolitic volcanism related to ore formation has been dated at 550Dž Ma by ion-probe U/Pb on zircons. The economic silver mineralization is superimposed on an older, discrete base-metal assemblage associated with calc-alkaline granodioritic magmatism. The magmatism is dated at 572LJ Ma by ion-probe U/Pb dating on zircons, and by 40Ar/39Ar dating on hydrothermal muscovites. In the Anti-Atlas Mountains, the Precambrian-Cambrian transition appears as an important period for the formation of major, productive precious-metal deposits associated with volcanic events and extensional tectonics. The Imiter silver deposit constitutes a Precambrian analogue to modern epithermal deposits.  相似文献   

7.
延边地区是中国东北部陆缘浅成热液金铜矿床发育的地区之一,广泛发育着浅成热液金矿床、中温热液金(铜)矿床和中深成中高温热液富金铜矿床(类斑岩型);富金铜矿床的成矿时代发生在105~102 Ma,为了进一步确定浅成热液金矿床与中深成中高温热液富金铜矿床的成矿动力学背景,采用流体包裹体的~(40)Ar/~(39)Ar激光探针定年法,对该区典型浅成热液金矿床进行了精细的年代学测定,获得刺猬沟金矿床、五星山金矿床和杜荒岭金矿床的脉石矿物石英流体包裹体的~(40)Ar/~(39)Ar等时线年龄分别为(141±7)Ma、(123±7)Ma和(107±6)Ma,其中刺猬沟金矿床((141±7)Ma)和五星山金矿床((123±7)Ma)的脉石矿物石英流体包裹体含有过剩放射性成因~(40)Ar,而杜荒岭金矿床((107±6)Ma)的脉石矿物石英流体包裹体几乎不含或含极少量过剩放射性成因~(40)Ar。结合最新获得的相关地质体的精细年代学成果,认定该区浅成热液金矿床成矿作用均发生在早白垩世晚期,或发生在早白垩世晚期火山喷发、浅成岩浆就位之后,其形成环境与富金铜矿床一致,为古太平洋板块向亚洲大陆正北向俯冲转入Izanagi-Farallon板块西向俯冲的构造转换期。  相似文献   

8.
中国东部中生代浅成热液金矿可以划分为与花岗岩和与碱性岩有关的两种类型;也可以分为高硫型和低硫型两大类,而且以后一种为主。这些金矿的形成和分布受区域构造制约,具体地说是受破火山口、火山角砾岩筒以及与火山机构有关的断裂控制。成矿围岩为火山岩类及同源花岗质岩石和周围地层。主要的蚀变组合为冰长石一玉髓一绢云母或明矾石一高岭石一石英(玉髓)。成矿年龄分布在180~188Ma,135~144Ma,127~115Ma和94~105Ma四个区间,前三组年龄分别响应于中生代华北板块与扬子克拉通的造山碰撞后陆内造山的伸展过程、构造体制大转折以及岩石圈大减薄,后一组为华南地区岩石圈再一次强烈伸展期间的产物。虽然这些矿床的形成时间有差异,但都是发育于大陆伸展环境中。  相似文献   

9.
The continental margin of Northeast China, an important part of the continental margin-related West Pacific metallogenic belt, hosts numerous types of gold-dominated mineral deposits. Based on ore deposit geology and isotopic dating, we have classified hydrothermal gold–copper ore deposits in this region into four distinct types: (1) gold-rich porphyry copper deposits, (2) gold-rich porphyry-like copper deposits, (3) medium-sulphidation epithermal copper–gold deposits, and (4) high-sulphidation epithermal gold deposits. These ore deposits formed during four distinct metallogenic stages or periods, at 123.6 ± 2.5 Ma, 110–104 Ma, 104–102 Ma, and 95.0 ± 2 Ma, corresponding to periods of Cretaceous intermediate–acid volcanism and late-stage emplacement of hypabyssal magmas along the northern margin of the North China platform. The earliest stage of mineralization (123.6 ± 2.5 Ma) corresponds to the formation of medium-sulphidation epithermal copper – gold deposits and was associated with a continental margin magmatic arc system linked to subduction of the Pacific Plate beneath the Eurasia. This metallogenesis is closely related to high-K calc-alkaline intermediate–acid granite and pyroxene – diorite porphyry magmatism. The second and third stages of mineralization in the study area (110–104 Ma and 104–102 Ma, respectively) correspond to the formation of gold-rich porphyry copper, porphyry-like copper, and high-sulphidation gold deposits, with metallogenesis closely related to sodic or adakitic magmatism. These magmas formed in a continental margin magmatic arc system related to oblique subduction of the Pacific Plate beneath the Eurasia, as well as mixing of crust-derived remelted granitic and mantle-derived adakitic magmas. During the final stage of mineralization (95.0 ± 2 Ma), metallogenesis was closely related to sodic or adakitic magmatism, with diagenesis and metallogenesis related to the disintegration or destruction of the Pacific Plate, which was subducted beneath the Eurasian Plate during the Mesozoic.  相似文献   

10.
Wulaga epithermal gold deposit is located in northeast China. Gold mineralization mainly occurs within the crypto‐explosive breccia belt of subvolcanic intrusion. Constraints on the precise timing of mineralization are of fundamental importance for understanding the ore genesis of the Wulaga gold deposit and its mineralization potential. Three hydrothermal stages have been identified: the early veiny quartz–euhedral pyrite stage; the fine pyrite–marcasite–gray or black chalcedony stage; and the late carbonate–pyrite stage. The Rb–Sr dating of gold‐bearing pyrites from the fine pyrite–marcasite–gray or black chalcedony stage is 113.8 ± 4.4 Ma with an initial 87Sr/86Sr ratio of 0.706346 ± 0.000019. The age of the gold deposit is consistent with the age of ore‐bearing volcanic (109–113 Ma) and subvolcanic intrusion (103–112 Ma) within the error limits, and the pyrite initial ratio has an identical value of 87Sr/86Sr to subvolcanic intrusion (0.705547 ± 0.000012). These indicate that crystallization of the wall rock and epithermal gold mineralization was coeval and likely cogenetic. Moreover, a lot of epithermal gold deposits that formed in Early Cretaceous volcanic and subvolcanic intrusions have been discovered in recent years in Heilongjiang province. Combined with the studies of tectonic and magmatic activities, we propose that the formation of the Wulaga gold deposit might be caused by the heated circum‐flow water related to the volcanic–subvolcanic intrusive hydrothermal event triggered by the ancient subduction of the Izanagi plate in the Early Cretaceous.  相似文献   

11.
三江地区义敦岛弧造山带演化和成矿系统   总被引:80,自引:12,他引:80       下载免费PDF全文
义敦岛弧是喜马拉雅巨型造山带中的一个复合造山带,它经历了印支期洋壳俯冲造山、燕山湖弧-陆碰撞和喜马拉雅期陆内走滑作用诸演化历史。可能由于洋壳板片俯冲角度不同,义敦晚三叠世古岛弧带(206~237 Ma)南北两段具有不同的发育历史,北段昌台弧以发育孤间裂谷为特色,具张性弧特征,发育扩张环境流体聚敛成矿系统,形成VMS型Zn-Pb-Cu矿床和浅成低温热液型Ag-Au-Hg矿床;南段中甸弧不发育弧后盆地,但广泛发育钙碱性弧火山岩-玢岩-斑岩杂岩系和挤压环境岩浆-流体成矿系统,形成斑岩型-夕卡岩型铜多金属矿床。在三叠纪-侏罗纪之交的弧-陆碰撞作用中,早期大陆板片俯冲形成同碰撞花岗岩带(约200 Ma),晚期造山后伸展作用,形成A型花岗岩带(75~138 Ma),伴随扬子大陆板片俯冲而发生的强烈剪切和推覆,在甘孜-理塘蛇绿混杂带发育挤压剪切环境流体聚敛成矿系统,形成剪切带型金矿。伴随造山后伸展和A型花岗岩侵位,发育伸张环境岩浆-流体聚敛成矿系统,主要形成夕卡岩型锡矿和构造破碎带热浪脉型银多金属矿床。印度-亚洲大陆碰撞在义敦造山带主要表现为陆内走滑作用,并控制碱性花岗岩和花岗斑岩的发育(50~30 Ma),伴随斑岩型金矿的形成。  相似文献   

12.
从"景"、"场"、"相"、"床"4个等级体制观点出发,阐述了该金属成矿省成矿内部组成,观点新颖。金矿赋存于中新世-更新世马林丹群火山岩中,该群火山岩呈零星岛状散布于斯丹岗-哥塔巴托-大姑玛线性构造活动带(SCDL)的东部,并受到后期安山玢岩的侵入。安山玢岩具有埃达克岩性质,它的侵入对于后期的围岩蚀变和成矿作用起到重要的控制作用。拉拉布矿床的安山岩具有明显的热液蚀变,属于冰长石-绢云母型金矿化,认为金是在PH值近中性的浅表环境中由于热液沸腾并伴随流体的混合沉淀而成,通常富集于标高30~200m之间。围岩蚀变强度大,并有明显的分带规律,制约着金矿的形成。金的富集与下列地质事件相关:(1)形成角砾岩之前的围岩蚀变作用;(2)热液角砾岩的形成;(3)形成角砾岩后的围岩蚀变作用;(4)金矿形成。  相似文献   

13.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   

14.
《International Geology Review》2012,54(16):1843-1869
Numerous molybdenum (Mo) ore deposits have been discovered in the East Xingmeng orogenic belt (East Central Asian orogenic belt), over the past 10 years, and this region is becoming one of the world's most important Mo production areas. It contains 6.18 Mt of proven Mo metal reserves, which accounts for 30% of the total proven Chinese Mo reserves. The ore district includes 37 deposits and 15 occurrences, with three major Mo ore types, that is porphyries, skarns, and hydrothermal veins. The latter can be subdivided into quartz- and volcanic hydrothermal-vein types. With the exception of the Ordovician Duobaoshan porphyry Cu–Mo deposit (477 Ma), all the East Xingmeng Mo deposits formed during the Mesozoic. Re–Os dating of molybdenite has documented three episodes of Mo mineralization: Early Triassic (248–242 Ma), Jurassic (178–146 Ma), and Early Cretaceous (142–131 Ma). Early Triassic Mo deposits are distributed along the northern margin fault of the North China Craton (NCC) and include porphyry and quartz vein types. They are characterized by the association of Mo + Cu. Jurassic Mo deposits are mainly distributed in the eastern area and include porphyry, quartz vein, and skarn types. They are typified by Mo alone and/or the association of Mo, Pb, and Zn. Cretaceous Mo deposits are distributed in all areas and include porphyry and volcanic hydrothermal vein types. Similar to the Jurassic ores, they are simple Mo or Mo + Pb + Zn deposits. Volcanic hydrothermal vein deposits are characterized by an association of molybdenum and uranium. The Triassic Mo deposits formed in a syn-collision setting between the Siberian and North China plates. The Jurassic Mo deposits formed in a compressional setting, which was probably triggered by the westward subduction of the palaeo-Pacific plate. The Early Cretaceous Mo deposits are linked to a tectonic regime of lithosphere thinning, which was caused by delamination of thickened lithosphere. However, the Mo deposits in the Erguna terrane of the northwest Xingmeng orogenic belt may be related to the evolution of the Okhotsk Ocean.  相似文献   

15.
Abstract. Kuroko deposits are a representative volcanic‐hosted massive sulfide deposit and the Hokuroku district is economically the most important Kuroko containing province in Japan. There are two cycles of the bimodal volcanic sequence in the Hokuroku district. The pre‐ore volcanism started with basaltic activity and was followed by intensive felsic hyaloclas‐tic activity under bathyal conditions. The post‐ore sequence also began with basaltic activity intercalated with mudstone and was followed by alternating beds of pumice tuff with several lava flows and mudstone. Kuroko deposits are situated in the final period of the pre‐ore felsic volcanic sequence of the first bimodal volcanic cycle. Based on a detailed investigation of existing age data, it was concluded that the felsic volcanic sequences in the pre‐and post‐Kuroko formation can be divided into a pre‐ore dacite group (16–13.5 Ma), a D2 dacite group (lower unit of the post‐ore volcanic sequence, 12.7±0.6~ ll Ma) and a Dl dacite group (upper unit of the post‐ore sequence including quartz‐porphyry and granitoid, 11sim;10 Ma) in ascending order. Field and microscopic observations show that the pre‐ore dacite is characterized by aphyric to plagioclase‐phyric lava and the post‐ore dacitic rocks are characterized by quartz‐plagioclase‐phyric aphanitic lava and dome. These three dacite groups are petrochemically discriminated by SiO2‐Al2O3 and CaO‐TiO2 diagrams, excluding altered specimens. The distribution of the normative compositions on the Q‐An‐Ab‐Or diagram suggests that the pre‐ore dacites trend on the 5 kb cotectic line (equilibrated to 10—15 km deep) and those of the post‐ore trend along the 1 kb line (a few km deep). The secular variation of the major elements indicates that the rhyolitic members genetically related to the Kuroko formation could be the most differentiated products in the pre‐ore felsic volcanism. The distribution of Nb against SiO2 content in the pre‐ and post‐ore bimodal volcanic cycles indicates that these two volcanisms could have been generated by different magmatic origins. The difference would have been caused by the tectonic conversion from a back‐arc to an island‐arc setting.  相似文献   

16.
中国东北部陆缘是我国内生金矿床较为发育的地区之一,以成矿作用复杂、蕴藏丰富的金资源量倍受国内外地质学家关注。通过对该区内生金矿的地质和成矿年代的系统研究,初步将该区内生金矿床划分为中温热液金矿床、接触交代-热液金矿床、斑岩型/类斑岩型金铜矿床和浅成低温热液金矿床4种主要成因类型和3个重要成矿期(170~160 Ma、130~110 Ma和110~90 Ma)。结合同位素地球化学特征,进一步确定中温热液金矿床的成矿物质主要来自下地壳源,成矿作用与中生代燕山早期古太平洋板块俯冲作用引发的中国东部大陆边缘岩石圈减薄及拆沉的动力学过程密切相关;接触交代-热液金矿床的成矿物质来源于年轻地壳,成矿作用与古太平洋板块俯冲引起的岩石圈减薄拆沉的伸展构造背景下的岩浆接触交代作用更为密切;而斑岩型/类斑岩型金铜矿床和浅成低温热液金矿床的成矿物质来源为壳幔混合源,其成矿发生在古太平洋板块向亚洲大陆正北向俯冲转入Izanagi Farallon板块西向俯冲的构造转换期。  相似文献   

17.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

18.
The Tianshan–Xingmeng molybdenum belt is part of a larger E–W-trending metallogenic belt in northern China. Most of these molybdenum deposits occur as porphyry or porphyry-skarn type, but there are also some vein-type deposits. Following systematic Re-Os dating of molybdenite from four deposits and comparisons with two previously dated deposits, we conclude that molybdenum mineralization in the Tianshan–Xingmeng Orogenic Belt resulted from hydrothermal activity linked to the emplacement of granitoid stocks. Three pulses of granitoid magmatism and Mo mineralization have been recognized in this study, corresponding to tectonic events in the Tianshan–Xingmeng Orogenic Belt. We identify five distinct stages of Mo mineralization events in the Tianshan–Xingmeng Orogenic Belt: 320–250 Ma, 250–200 Ma, 190–155 Ma, 155–140 Ma, and 140–120 Ma. Late Palaeozoic (320–250 Ma) Mo mineralization was closely related to closure of the Palaeo-Asian Ocean and collision between the Siberia and Tarim cratons. Triassic (250–200 Ma) Mo mineralization occurred in a post-collisional tectonic setting. The Early–Middle Jurassic (190–155 Ma) Mo mineralization was related to subduction of the Palaeo-Pacific Ocean on the eastern Asian continental margin, whereas in the Erguna block, the Mo mineralization events were associated with the subduction of the Mongol–Okhotsk Ocean. From 155 to 120 Ma, large-scale continental extension occurred in the Tianshan–Xingmeng Orogenic Belt and surrounding regions. However, the Late Jurassic (150–140 Ma) Mo mineralization events in these areas evolved in a post-orogenic extensional environment of the Mongol–Okhotsk Ocean subduction system. The Early Cretaceous (140–120 Ma) Mo mineralization occurred under the combined effects of the closure of the Mongol–Okhotsk Ocean and subduction of the Palaeo-Pacific Ocean.  相似文献   

19.
The apatite fission track dating of samples from the Dabashan(i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous(~90–70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene(~50–45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic(since ~10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone(PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous(~70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.  相似文献   

20.
大兴安岭地区位于兴蒙造山带的东段,构造、岩浆活动强烈,蕴藏着丰富的内生有色金属、贵金属矿产资源。本文通过对该区内生铜矿床的地质特征、成因类型和年代学研究,初步将区内内生铜矿床划分为斑岩型、浅成热液高硫化型(铜银、铜锡)和接触交代型三种成因类型,除铜锡矿床外,它们的成矿作用均与高钾钙碱系列I型花岗质岩浆密切相关;其中斑岩型和浅成热液高硫化型(铜、银)的成矿分别发生在485Ma、180~170Ma和170~160Ma;而浅成热液高硫化型(铜锡)矿床与A型花岗质岩浆相关,成矿在150~135Ma之间;接触交代型与它们相伴生,主要发生在180~160Ma和150~135Ma。其成矿动力学背景分别与早古生代兴安地块与松嫩地块的拼合碰撞造山、中侏罗世的西伯利亚板块和华北板块的陆缘增生带碰撞缝合造山与早白垩世碰撞造山后的地壳伸展减薄作用过程相适应,矿床在不同阶段的造山挤压与伸展转换或造山期后的伸展阶段就位,这项研究为深入研究该区内生多金属成矿规律提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号