首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefaction index (excess pore pressure divided by initial effective stress. In this paper, the developmental degree of excess pore pressure is described by liquefaction index) decreases from the upper part to the lower part of the sand foundation in the vertical direction and decreases from near to far away from the bucket's side wall in the horizontal direction, large settlements of the bucket and the sand around the bucket are induced by the horizontal dynamic loading. The dynamic responses of the bucket of a smaller height (when the diameter is the same) are heavier. A cyclic crack some distance near the bucket occurs in the sand.  相似文献   

2.
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.  相似文献   

3.
王栋  金霞 《中国海洋工程》2006,20(4):665-672
1 .IntroductionSuctioncaissons have been widely usedfor offshore oil exploration duetothe advantages of econo-my and simple installation over traditional piles (Huanget al .,2003) .For tensionleg platforms andspar platforms in deep ocean,suction caissons …  相似文献   

4.
Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.  相似文献   

5.
周素静  张艳  王栋 《海洋通报》2019,38(6):727-733
当负压沉箱被用作深水管汇或管道终端基础时,其长径比常介于1~2之间,而目前的沉箱复合承载力包络面表达式大都针对长径比不超过1的情况,少数覆盖长径比大于1的研究又不适用于土体表层强度非零的情况。采用有限元方法,模拟竖向力、水平力和弯矩共同作用下沉箱基础的响应,采用Probe加载模式获得沉箱的复合承载力包络面。进行大量变动参数分析,针对长径比为1~2的沉箱,讨论了长径比和土体强度分布对单向承载力和包络面的影响,并给出了预测沉箱复合承载力的归一化表达式。  相似文献   

6.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

7.
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite e  相似文献   

8.
Undrained bearing capacity of spudcan under combined loading   总被引:1,自引:0,他引:1  
The bearing capacities of spudcan foundation under pure vertical (V),horizontal (H),moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis.The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail.The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors,which are compared with published results.Ultimate limit states under combined loading are presented by failure envelopes,which are expressed in terms of dimensionless and normalized form in three-dimensional load space.The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.  相似文献   

9.
复合加载下桶形基础循环承载性能数值分析   总被引:1,自引:0,他引:1  
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。  相似文献   

10.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   

11.
传统吸力基础是一个单桶结构,被广泛作为海洋平台、漂浮结构的基础,近年来也被推广到海上风电塔架。作为风电塔架基础,要充分提高其水平承载能力。为此,提出一种改进的基础形式—裙式吸力基础。采用Z_SOIL有限元软件,针对砂土地基,从水平单调加载和循环加载两个方面,对传统单桶吸力基础和裙式吸力基础进行了承载性能对比研究,得到了相应的荷载-位移曲线。研究结果表明,裙式吸力基础由于设置了"裙"结构,显著提高了其抵抗水平静载和循环水平动力荷载的能力,并能有效控制基础的水平位移,是值得推广应用的一种新型海洋工程基础形式。  相似文献   

12.
深海吸力锚基础的极限承载能力是海洋工程锚固系统的一个关键问题。基于Coulomb摩擦接触对原理,给出一种模拟吸力锚承载能力的有限元模型。在该数值模型基础上,利用通用有限元分析软件ABAQUS,研究系泊点位置、吸力锚长径比对极限承载力的影响,并给出深海吸力锚失稳模式。结果表明,系泊点位置极大地影响着吸力锚的极限承载力与稳定性,系泊点位置的变化会导致吸力锚出现前倾转动、平移滑动和后仰转动失稳模式,同时吸力锚失稳模式受长径比的影响。为工程实际和理论分析提供了技术支持和理论指导。  相似文献   

13.
孙德成  方辉  刘勇 《海洋工程》2020,38(6):42-52
开孔沉箱孔洞周围存在以三轴循环应力为特征的复杂承载区,其中混凝土损伤速度远大于单轴应力条件,局部疲劳损伤快速累积使结构整体承载能力迅速下降。考虑迎浪面入射波浪与消浪室内反射波浪的循环作用,针对开孔区域复杂应力状态下的疲劳损伤问题,基于不可逆损伤力学发展的数值计算方法模拟开孔板疲劳过程,得到循环荷载作用下不同类型开孔板的损伤演化历程,并计算损伤后整体结构极限承载力大小,通过综合对比孔洞损伤发展规律和结构极限承载能力,建立了疲劳作用下开孔沉箱极限承载能力判断依据。现有规范依据设计使用年限、波浪条件、作用效应组合等确定材料与结构强度,但并未充分体现开孔结构的优势与承载特点,在此基础上文中补充了开孔结构的优化设计以及实际寿命判断。  相似文献   

14.
港口、海洋工程结构物基础一般处于复合加载状态,其极限承载力通常采用近来引入的极限荷载图进行评价.对位于地基表面的重力式海洋基础,需要考虑基础与地基间的接触特性对极限承载力的影响.以大型通用有限元软件ABAQUS为计算平台,建立了复合加载模式的地基极限承载力数值分析方法;针对饱和黏土地基上的表面基础,利用在ABAQUS平台上开发的接触计算模块,模拟基础与地基间竖向可分离、切向完全粘结的接触作用;进而基于建立的分析方法,进行系统的有限元计算,分析地基的破坏模式随荷载条件的变化,给出地基的极限荷载包络图,并与经典承载力计算公式结果进行对比.研究结果表明,经典承载力计算公式低估了三维荷载条件下的地基极限承载力,有限元计算模型及数值分析方法,可以较好地分析研究地基的失稳机理及承载力特性,并可考虑基础与地基不同的接触条件对破坏模式及组合极限承载力的影响.  相似文献   

15.
复合加载模式作用下地基承载性能数值分析   总被引:11,自引:3,他引:11  
确定竖向荷载(V)、水平荷载(H)和力矩(M)共同作用下建筑物地基的破坏模式及在荷载空间(H,V,M)中的破坏包络面是地基设计中的关键问题。为提高Swipe试验方法计算精度,提出了改进方案,进而利用有限元方法分析了复合加载模式作用下均质粘性土地基上条形基础的破坏包络面。计算表明,基于改进Swipe试验方法的数值模拟结果明显好于常规Swipe试验方法。针对海洋工程中实际复合加载模式的特点,探讨了竖向荷载分量V对地基破坏模式和H-M荷载平面上的破坏包络线的影响,结果表明竖向荷载分量显著地改变了地基的破坏模式及包络线的形状。  相似文献   

16.
吸力基础具有施工速度快、安装过程中受海况天气影响小且易于回收重复利用等优点,被广泛应用于海洋工程。当吸力基础作为海上风电塔架的基础时,常常承受较大的水平荷载,因此其水平承载力是设计的主控因素。介绍了海上风机基础的设计要求,分析了影响基础水平承载性状的因素,总结了吸力基础受水平单调荷载、水平循环荷载和不同荷载组合三个方面的研究现状。讨论了水平荷载的大小、水平加载的高度(偏心率)、循环荷载的频率、循环荷载的次数、循环荷载的幅值、循环荷载的方向性、竖向荷载对吸力基础水平承载性状的影响,考虑了水平荷载的非共线性,指出了目前研究的不足,明确了吸力基础水平承载性状进一步研究的方向,提出了供工程实践参考的建议。  相似文献   

17.
陈洋彬  郑敬宾  王栋 《海洋工程》2021,39(1):112-120,170
自升式平台作业前需对桩靴基础进行预压安装,使桩靴具备抵抗竖向-水平-弯矩复合荷载的能力。安装过程中,桩靴上部将形成一定深度的孔洞。弱超固结黏土地基中,土体强度较高,桩靴最终贯入深度较浅,而形成的上部孔洞较深,因此孔洞将对桩靴就位后的承载力产生影响。通过有限元分析,研究弱超固结黏土中桩靴上部孔洞对承载力的影响,结果表明:1)与无孔洞的情况相比,孔洞的存在对桩靴的单向和复合承载力有削弱作用; 2)当桩靴与孔洞底部距离大于桩靴直径时,承载力不再受上部孔洞的影响; 3)当桩靴埋深小于等于0.75倍桩靴直径时,无论桩靴上部有无孔洞,现有预测公式都不能较为合理地预测弱超固结黏土地基的复合承载力,为此提出了考虑孔洞影响的桩靴复合承载力包络面预测公式。  相似文献   

18.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

19.
复合加载条件下吸力式沉箱基础承载特性数值分析   总被引:2,自引:0,他引:2  
王志云  王栋  栾茂田  范庆来  武科 《海洋工程》2007,25(2):52-56,71
吸力式沉箱基础的承载特性是海洋工程结构设施建造与设计中的一个关键问题。这种新型的深水海洋基础型式,通常承受竖向上拔荷载与水平荷载的共同作用,其工作性能与设计理论远远不能满足工程实践的需要。本文采用有限元分析方法对吸力式沉箱基础的极限承载特性进行数值计算。以大型通用有限元分析软件ABAQUS为平台,通过二次开发,数值实现了Swipe试验加载方法和固定位移比分析方法,针对不同的沉箱长径比、土的强度折减系数,探讨了沉箱基础在垂直上拔荷载和水平荷载单调联合作用下的极限承载力,通过对不同荷载组合的数值计算构造了复合加载条件下沉箱基础破坏包络面。  相似文献   

20.
Abstract

The present work develops a theoretical model based on a rational mechanical model and the failure mechanism of anchor piles in the seabed, by which the failure mode and pullout capacity of anchor piles under inclined loading can be predicted in the soils with both cohesive and cohesionless properties. Experimental and numerical results are employed to validate the theoretical predictions. Parametric studies are performed to investigate the effects of different parameters on the failure mode and pullout capacity of anchor piles, to demonstrate the applicability and efficiency of the theoretical model and to gain further knowledge of the anchor properties. An analytical method is also proposed to evaluate the optimal position of the attachment point of anchor piles, and confirmed by relevant studies in either cohesive or cohesionless soils.
  1. Highlights
  2. A novel theoretical model is proposed to analyze the failure mode and pullout capacity of anchor piles.

  3. The model is applied to inclined loading and to soils with both cohesive and cohesionless properties.

  4. Efficiency and applicability of the model are validated through comparative and parametric studies.

  5. A simple expression is proposed to predict the optimal position of the attachment point for anchor piles.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号