首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用三维斜压流体动力学模型 ,通过对东海沿岸海区冬、夏季的斜压环流及其温盐结构的数值研究 ,揭示研究海区垂直环流及其温盐结构的动力过程及其成因。垂直环流的模拟结果表明 :冬季 ,沿岸海区的垂直环流以逆时针流动 ,近表层为向岸流 ,沿岸为下降流 ,近表层以下为离岸流 ,其在外海有明显的上升趋势 ,沿岸下降流自表层至底层逐渐由强变弱 ;夏季 ,沿岸海区的垂直环流以顺时针流动 ,近表层以下为向岸流 ,沿岸为上升流 ,近表层为离岸流 ,其在外海有明显的下降趋势 ,沿岸上升流自底层至表层逐渐由弱变强。就整个沿岸海区而论 ,冬季沿岸下降流和夏季沿岸上升流的强度都随着岸界地形坡度、风速及风向与岸线偏角的变化而变化。沿岸下降流形成的主要原因是由于冬季东北风与岸界地形的耦合效应及海区温盐分布不均匀所致 ,而沿岸上升流形成的主要原因则是由于夏季西南风与岸界地形的耦合效应及海区温盐分布不均匀所致。  相似文献   

2.
A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 ×10 -3 cm s -1 is predicted in July in the southern region off the coast.  相似文献   

3.
A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 2 10 -3 cm s -1 is predicted in July in the southern region off the coast.  相似文献   

4.
INTRODUCTIONIn laboratory, Griffiths and Linden (1981 ) simulated the buoyancy-driven coastal currentsusing both a ring source and a point source in a rotating cylinder tank. The POint source was simifar to the river-forced plume in the coastal region. The coastal plume together with the gravitycoastal current moved along the coast, keeping the barrier on the right in the Northern Hemisphere. Stern et al. (1982) also conducted a similar experiment using a rectangular tank and carried ou…  相似文献   

5.
Long series data of a thermistor chain in the Black Sea coastal zone near Gelendzhik were analyzed. A thermistor chain installed 1 km offshore and at a depth of 22 m. There are full and incomplete upwelling events observed. The study of upwelling genesis based on: wind speed data from the NCEP/CFSR reanalysis and Gelendzhik weather station, velocity and direction of coastal currents measured by ADCP profiler moored on the bottom near the thermistor chain. Over the whole observation period (warm seasons of 2013–2015), more than 40 events of upwelling were registered four of them were full upwellings, when presence of under-thermocline water was observed near the sea surface. For every upwelling event, conditions prior to the changes in thermic structure, were analyzed. It is found that full upwelling generally occur under synergistic wind and current forcing. Fairly strong forcing of one of these factors is sufficient for partial upwelling to occur.  相似文献   

6.
夏季长江冲淡水转向机制的数值试验   总被引:3,自引:0,他引:3       下载免费PDF全文
白学志  王凡 《海洋与湖沼》2003,34(6):593-603
利用普林斯顿海洋环流模式(POM),通过一系列的理想试验,探讨了夏季长江冲淡水的扩展机制。结果表明:(1)倾斜底形是夏季长江冲淡水向东北偏转的一个必要条件;夏季冲淡水向东北偏转是南风、斜压效应和底形的共同作用的结果,其中风应力和底形的相互作用占主导地位;单纯的底形东倾不能使冲淡水向北偏转。平底时,南风和淡水浮力强迫都不能使冲淡水向北偏转。(2)无风时,人海淡水可以在河口附近强迫出一个反气旋涡旋和贴岸南下的狭窄的沿岸流,反气旋涡旋与淡水浮力强迫(斜压效应)有关,南下沿岸流则与质量输入有关;平底时,反气旋涡旋位于河口正东,倾斜底形时,反气旋涡旋向北拉伸,冲淡水的一部分沿岸向北扩展;人海淡水在河口附近强迫出一个闭合的垂直环流圈:上层为离岸流,淡水向外海扩展,约在离岸30—45km处有下降流;低层有高盐水沿海底流向河口,约在离河口。lOkm处与向海的径流相遇,引起上升流。  相似文献   

7.
To address the mechanisms controlling halocline variability in the Beaufort Sea, the relationship between halocline shoaling/deepening and surface wind fields on seasonal to decadal timescales was investigated in a numerical experiment. Results from a pan-Arctic coupled sea ice-ocean model demonstrate reasonable performances for interannual and decadal variations in summer sea ice extent in the entire Arctic and in freshwater content in the Canada Basin. Shelf-basin interaction associated with Pacific summer and winter transport depends on basin-scale wind patterns and can have a significant influence on halocline variability in the southern Beaufort Sea. The eastward transport of fresh Pacific summer water along the northern Alaskan coast and Ekman downwelling north of the shelf break are commonly enhanced by cyclonic wind in the Canada Basin. On the other hand, basin-wide anti-cyclonic wind induces Ekman upwelling and blocks the eastward current in the Beaufort shelf-break region. Halocline shoaling/deepening due to shelf-water transport and surface Ekman forcing consequently occur in the same direction. North of the Barrow Canyon mouth, the springtime down-canyon transport of Pacific winter water, which forms by sea ice production in the Alaskan coastal polynya, thickens the halocline layer. The model result indicates that the penetration of Pacific winter water prevents the local upwelling of underlying basin water to the surface layer, especially in basin-scale anti-cyclonic wind periods.  相似文献   

8.
A high-resolution, multi-level, primitive equation ocean model is used to examine the response of the coastal region from 22.5°S to 35°S of the Chile Current System to both equatorward and climatological wind forcing. The results from both types of forcing show that an equatorward surface current, a poleward undercurrent, upwelling, meanders, filaments and eddies develop in response to the predominant equatorward wind forcing. When climatological wind forcing is used, an offshore branch of the equatorward surface current is also generated. These features are consistent with available observations of the Chile Current System. The model results support the hypothesis that wind forcing is an important mechanism for generating currents, eddies and filaments in the Chile eastern boundary current system and in other eastern boundary current regions which have predominantly equatorward wind forcing.  相似文献   

9.
The initiation of the toxic harmful algal bloom (HAB), Karenia brevis, along the west Florida coast has been associated with upwelling events. Upwelling processes may be responsible for the transport of nutrients or algae from deep offshore locations across the Florida shelf to the coast. The influence of coastal wind-driven upwelling on the onset and occurrences of K. brevis in this region was numerically investigated using Rutgers University's Regional Ocean Modeling System. Computations were carried out in an idealized model domain, a two-dimensional slice in the cross-shore and vertical directions. The surface forcing data used was from several offshore meteorological buoys. The motion of the algae was simulated using Lagrangian particles and a passive tracer. The numerical simulations of three K. brevis events in 2000–2002 showed that the particles respond (with upwelling/downwelling) to the along-shore wind stresses as expected and some upwelling was present during the events. Comparison of the passive tracer fields with measured fluorescence data exposed the model's sensitivity to the particular surface forcing data employed and the relatively more significant role played by surface forcing over initial conditions. The present model set-up constitutes a useful predictive tool for conditions conducive to the onset of HABs. It is planned to be used in a real-time mode to aid the NOAA HAB monitoring and forecasting system.  相似文献   

10.
Prominent coastal upwelling and downwelling events due to Ekman transport were observed during the period from 14 to 18 August 1983 along the Misaki Peninsula in the Seto Inland Sea, Japan. The coastline of the Misaki Peninsula is aligned approximately in an ENE-WSW direction. When an ENE wind continued blowing for about two days, the warm water in the upper layer was pushed offshore and cold water in the lower layer upwelled along the peninsula. The estimated upwelling speed 3 m below the sea surface was 0.032 cm sec–1. On the other hand, when a WSW wind continued blowing for about two days the warm water in the upper layer sank into the lower layer along the peninsula. The estimated downwelling speed 3 m below the sea surface was 0.080 cm sec–1. The time lag between the variations of the alongshore wind and offshore current was about 0.5 days.  相似文献   

11.
The mechanism of a characteristic sea level response (barotropic coastal ocean response) to wind field fluctuation around the tip of the Izu Peninsula observed during the middle of December 2000 to the middle of January 2001 was investigated based on three types of numerical experiments using the Princeton Ocean Model with various parameters. The response was characterized by the relaxation of sea level falling (rising) during eastward upwelling (westward downwelling) favorable wind regime. Analyses of quasi-realistic numerical model results in terms of the vertically integrated momentum balances and vorticity balance for the barotropic mode revealed that: 1) development/abatement of two anomalous circulations generated around the tip of the Izu Peninsula controls the sea level response through the acceleration/deceleration of a quasi-geostrophic barotropic coastal current between the circulations; 2) nonlinear vorticity advection by the Kuroshio Current and by the coastal current, coupled with vorticity diffusion, decelerates the quasi-geostrophic coastal current in the latter half of the wind regimes, which induces the relaxation of sea level rise/fall. The results of the quasi-realistic numerical experiment suggest that an analysis of the vorticity balance for the barotropic mode contributes to a better understanding of sea level responses to wind in coastal regions with strong currents and complex topography. In addition, a numerical experiment with idealized spatially uniform density stratification and a quasi-realistic wind field shows that if the Kuroshio Current had been shifted far offshore from the Izu Peninsula during the observation period, westward propagating continental shelf waves would have controlled the coastal sea level response.  相似文献   

12.
ENSO-induced interannual variability in the southeastern South China Sea   总被引:5,自引:0,他引:5  
In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.  相似文献   

13.
During the 1997/1998 El Niño event, extensive oceanic temperature profiles were taken off the coast of California in January and February 1998 using Airborne Expendable Bathythermographs (AXBTs). These AXBT measurements are compared with altimetry-based upper-ocean temperature estimates using TOPEX and ERS satellite altimetry data. The altimetry-based temperature estimates are well correlated with the AXBT data, in particular when combining the two satellite data sets together to form a blended altimeter temperature estimate. Both the AXBT and altimetry data show that the nearshore coastal El Niño signal differed from that further offshore. The AXBT data show that near shore, the warm anomalies extended to much greater depths and had greater amplitude. A time series of the satellite-derived layer-averaged temperatures, averaged separately over the nearshore and offshore halves of the AXBT analysis domain, also shows a larger El Niño signal in the nearshore half. The role of local atmospheric forcing of the coastal oceanic temperature anomalies is analyzed using NCEP reanalysis and coastal upwelling data sets. The forcing terms include Ekman pumping, radiation, surface heat fluxes, precipitation, and alongshore wind stresses that drive coastal upwelling (expressed as a coastal downwelling index, CDI). The temperature forcing from all of the terms except the CDI anomalies are small. The CDI anomalies can explain most of the slowly varying temperature changes that occur near the coast during a two-year period spanning the El Niño event, as well as some of the larger amplitude, rapid (monthly) warming episodes that appear to be part of the El Niño signal. Several distinct rapid warming episodes, however, are not correlated with the CDI anomalies, and therefore we conclude that the nearshore El Niño signal originates from a combination of both a remote oceanic pathway and local atmospheric forcing.  相似文献   

14.
The paradox of upwelling is the relationship between strong wind forcing, nutrient enrichment, and shelf productivity. Here we investigate how across-shelf structure in velocity and hydrography plays a role in the retention (inshore) and export (offshore) of particles such as nutrients, plankton and larvae. We examine the spatial structure of the coastal currents during wind-driven upwelling and relaxation on the northern Californian Shelf. The field work was conducted as part of the Wind Events and Shelf Transport (WEST) project, a 5-year NSF/CoOP-funded study of the role of wind-driven transport in shelf productivity off Bodega Bay (northern California) from 2000 to 2003. We combine shipboard velocity profiles (ADCP) and water properties from hydrographic surveys during the upwelling season to examine the mean across-shelf structure of the hydrography and velocity fields during three contrasting upwelling seasons, and throughout the upwelling-relaxation cycle. We also present results from two winter seasons that serve as contrast to the upwelling seasons.During all three upwelling seasons clear spatial structure is evident in velocity and hydrography across the shelf, exemplified by current reversals inshore and the presence of a persistent upwelling jet at the shelf break. This jet feature changes in structure and distance from the coast under different wind forcing regimes. The jet also changes from the north of our region, where it is a single narrow jet, adjacent to the coast, and to the south of our region, where it broadens and at times two jets become evident. We present observations of the California Under Current, which was observed at the outer edge of our domain during all three upwelling seasons. The observed across-shelf structure could aid both in the retention of plankton inshore during periods of upwelling followed by relaxation and in the export of plankton offshore in the upwelling jet.  相似文献   

15.
In this paper, the authors study the influence of the wind on the dynamics of the continental shelf and margin, in particular the formation of a secondary upwelling (or downwelling) front along the shelf break.Observations during the MOUTON2007 campaign at sea along the Portuguese coast in summer 2007 reveal the presence of several upwelling fronts, one being located near the shelf break. All upwellings are characterized by deep cold waters close to or reaching the surface and with high chlorophyll concentrations. Simplified numerical models are built in order to study a possible physical mechanism behind this observation. First, a simple shallow water model with three distinct layers is used to study the formation of secondary upwelling fronts. We show that the physical mechanism behind this process is associated with onshore transport of high potential vorticity anomalies of the shelf for upwelling favorable conditions. Sensitivity studies to bottom friction, shelf width, continental slope steepness, shelf “length” are analysed in terms of potential vorticity dynamics. In particular bottom friction is analyzed in detail and we find that, even though bottom friction limits the barotropic velocity field, it enhances the cross-shore circulation, so that no steady state is possible when stratification is taken into account. Bottom friction accelerates the onshore advection of high potential vorticity, but also drastically reduces its amplitude because of diabatic effects. The net effect of bottom friction is to reduce the secondary upwelling development. Based on similar mechanisms, previous results are then extended to downwelling favorable conditions. Finally a more realistic configuration, with bottom topography, wind forcing and stratification set up from observations, is then developed and the results confronted to the observations. Simulations overestimate the velocity amplitude but exhibit good agreement in terms of density ranges brought over the shelf and general isopycnal patterns.The application and extension of the results to more general oceanic regions is discussed and we conclude on the influence of such process on the dynamics of wind driven circulation over a shelf.  相似文献   

16.
长江口海区上升流现象的数值模拟   总被引:3,自引:0,他引:3  
海洋中沿岸的上升流是近岸环流的重要组成部分,它能把低温、高盐和富含营养盐的深底层海水带到真光层,为浮游生物的光合作用提供充足的养料,从而对海区的初级生产力分布和生物资源量产生深刻影响。 赵保仁等(1992,1993,2001)曾报道过,在长江口海区的北部,大约以31°30′N、122°40′E为中心,在经纬方向上各达1度左右的上升流区,来自深底层的变性后的台湾暖流高盐水,在这里可以上升到5~10m层附近水域,并显著地影响到长江口的盐度分布和长江冲淡水的扩散特征及初级生产力的分布特征。近年来的观测,如1988年7月的东海海洋通量调查(白虹等,2002)和1998年8月的中韩黄海联合调查(邹娥梅等,2001)也都一再证实在长江口北部水域存在着上升流现象。此外,王辉(1996)还曾用数值方法模拟出了长江口的上升流现象。为进一步探讨这一上升流的形成机制,李徽翡等(2002)曾用POM(Mellor,1996;Blumberg等,1987)以5′×5′的水平网格计算了东中国海的三维环流特征,在他们的计算结果中,几乎所有已被观测所证实的东中国海的环流现象,都得到了较成功的数值模拟。本文将用这一模式计算得到的垂直流速,讨论长江口海区的上升流现象及其形成机制,为今后的研究提供重要的科学依据。  相似文献   

17.
The “Wind Events and Shelf Transport” (WEST) program was an interdisciplinary study of coastal upwelling off northern California in 2000–03. WEST was comprised of modeling and field observations. The primary goal of WEST was to better describe and understand the competing influences of wind forcing on planktonic productivity in coastal waters. While increased upwelling-favorable winds lead to increased nutrient supply, they also result in reduced light exposure due to deeper surface mixed layers and increased advective loss of plankton from coastal waters. The key to understanding high levels of productivity, amidst these competing responses to wind forcing, is the temporal and spatial structure of upwelling. Temporal fluctuations and spatial patterns allow strong upwelling that favors nutrient delivery to be juxtaposed with less energetic conditions that favor stratification and plankton blooms. Observations of winds, ocean circulation, nutrients, phytoplankton and zooplankton off Bodega Bay and Point Reyes (38°N) were combined with model studies of winds, circulation and productivity. This overview of the WEST program provides an introduction to the WEST special issue of Deep-Sea Research, including the motivation for WEST, a summary of study components, an integrative synthesis of major research results to-date, and background on conditions during field studies in May–June 2001 (the upwelling period on which this special issue is focused).  相似文献   

18.
The peculiarities of the space-time structures of the currents in the sea appearing after wind forcings that cause upwelling and downwelling are investigated. Numerical modeling using the Princeton Ocean Model (POM) and data analysis were performed for the local area of the Southeastern Baltic adjacent to the Kaliningrad Region (Russia). The geostrophic and ageostrophic velocity components were distinguished to determine the peculiar features of different types of currents. We suggest considering the collinearity coefficient: the scalar product of the geostrophic and ageostrophic velocity vectors. We also considered the local vorticity and turbulent viscosity. Their difference during the upwelling and downwelling was noted. The data of the current velocity simulations and the ADCP measurements at the location of the D-6 oil platform (the Kravtsov oil field) were compared. The modeling adequately reproduces the most energetic geostrophic jet currents and their space-time characteristics.  相似文献   

19.
An attempt has been made to develop a holistic understanding of upwelling and downwelling along the south-west coast of India. The main objective was to elucidate the roles of different forcings involved in the vertical motion along this coast. The south-west coast of India was characterized by upwelling during the south-west monsoon (May to September) and by downwelling during the north-east monsoon and winter (November to February). The average vertical velocity calculated along the south-west coast from the vertical shift of the 26?°C isotherm is 0.57?m/day during upwelling and 0.698?m/day during downwelling. It was concluded that upwelling along the south-west coast of India is driven by offshore Ekman transport due to the alongshore wind, Ekman pumping, horizontal divergence of currents and by the propagation of coastally trapped waves. Whereas downwelling along the coast is driven only by convergence of currents and the propagation of coastally trapped Kelvin waves. Along the west coast of India, the downwelling-favorable Kelvin waves come from the equator and upwelling-favorable waves come from the Gulf of Mannar region.  相似文献   

20.
Numerical experiments on the reconstruction of upwelling and downwelling at the eastern boundary of the ocean were carried out in the framework of a multilayer model of the ocean involving the upper mixed layer (UML). The peculiarities of these phenomena when they are formed and attenuated owing to the strong intensification and abatement of the longshore wind have been studied. It is shown that cold waters are always involved from the thermocline to the UML during upwelling. In downwelling, this occurs as a rule. However, during upwelling the abatement of the wind may result in subduction —the inflow of warm waters from the UML to the thermocline.Translated by Mikhail M. Trufanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号