首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Field mapping, analysis of borehole core and studies of geophysical potential field and seismic data can be used to demonstrate the existence of a number of distinct crustal blocks within Eastern Avalonia beneath eastern England and the southern North Sea. At the core of these blocks is the Midlands Microcraton which is flanked by Ordovician volcanic arc complexes exposed in Wales and the Lake District. A possible volcanic arc complex of comparable age in eastern England is concealed by late Palaeozoic and Mesozoic cover. These volcanic arc complexes resulted from subduction of oceanic lithosphere beneath Avalonia prior to collision with Baltica and Laurentia in late Ordovician and Silurian time, respectively. The nature of the crust north and east of the concealed Caledonides of Eastern England and south of the lapetus Suture/Tornquist Sea Suture, which forms the basement to the southern North Sea, is unclear. Late Ordovician metamorphic ages from cores penetrating deformed metasedimentary rocks on the Mid-North Sea High suggest these rocks were involved in Avalonia-Baltica collision before final closure of the lapetus Ocean between Laurentia and Avalonia.  相似文献   

2.
Collision orogeny at arc-arc junctions in the Japanese Islands   总被引:1,自引:0,他引:1  
Gaku  Kimura 《Island Arc》1996,5(3):262-275
Abstract In the Japanese Islands, collision tectonics are operating at arc-arc junctions in three regions: Hokkaido, Central Japan and Kyushu. Hokkaido is situated at the junction of the Kuril and Northeast Japan Arcs. The Kuril fore arc sliver collides with the Northeast Japan Arc, and the lower crust of the Kuril Arc thrusts upon the fore arc of the Northeast Japan Arc in Hokkaido. Outcrops of the lower crust are observed in the Hidaka Mountains in the fore arc of the junction area. Central Japan is in the juncture area among the Northeast Japan, Izu-Bonin, and Southwest Japan Arcs. The Izu-Bonin arc is colliding against the Honshu mainland, which has been bent by the collision. Kyushu is a juvenile collision area between the Southwest Japan and Ryukyu Arcs. The fore arc of the Southwest Japan Arc is starting to underthrust beneath the Kyushu islands along the Bungo Strait, where shallow seismicity within the crust is active in terms of the collision. Collision tectonics are observed at most of the arc-arc junctions in the circum-Pacific orogenic belts and may be an important process contributing to the relatively rapid growth of new continental crust in subduction zones.  相似文献   

3.
西伯利亚板块与华北克拉通碰撞导致古亚洲洋闭合,形成了幅员辽阔的中亚造山带,该带内记录了丰富的板块碰撞信息,揭示深部缝合边界对于研究洋-陆俯冲到陆-陆碰撞的深部动力学过程具有重要的科学意义.本文对查干敖包—化德410km大地电磁测深(MT)剖面数据进行反演,获得二维电性结构,为研究西伯利亚板块与华北克拉通碰撞带深部构造形迹、碰撞边界问题提供地电结构的依据.结合人工反射地震及地质资料获得以下认识:(1)西伯利亚板块与华北克拉通碰撞带地壳存在多组"U"型低阻异常,多对应弧型、倾斜或"鳄鱼嘴"状反射界面.莫霍面存在两处错断现象,并与深部电性梯度带对应.岩石圈地幔除白乃庙岛弧呈低阻块体外,均为高阻块体,这些电性结构特征反映了南北汇聚所形成的构造形迹.(2)碰撞带可分为二连—贺根山和索伦—西拉木伦河两个不同时期的汇聚体系,晚泥盆世—晚石炭世早期形成的二连—贺根山汇聚体系由二连—贺根山增生杂岩带、宝力岛弧地体及断裂带组成,深部缝合边界位于二连浩特.而晚二叠—早三叠的索伦—西拉木伦河汇聚体系由二道井子增生杂岩带和温都尔庙增生杂岩带及断裂带组成,深部缝合边界位于苏尼特右旗.(3)在锡林浩特地区软流圈内部存在高阻异常,可能为俯冲消失的洋壳或碰撞造山后拆离的岩石圈残片.  相似文献   

4.
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Circum-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental deformations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of ancient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin subsidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated ancient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan-Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton interiors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: propagating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in central-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, together with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.  相似文献   

5.
Abstract To the northeast of Taiwan, northwestward subduction of the Philippine Sea plate is occurring beneath the Eurasian plate along the Ryukyu Trench. The Ryukyu Trench, which is well defined along the northeastern part of the Ryukyu arc, cannot be easily defined west of 123° east. This is an area where the Gagua Ridge (whose origin is controversial) enters the trench from the south. On the basis of the marine geophysical survey data the following results have been obtained. The structural elements associated with the Ryukyu subduction system deform and partially disappear west of 123° east. Among other things the Ryukyu Trench terminates close to the western slope of the Gagua Ridge. The Gagua Ridge is the result of tectonic heaping and is likely to be an uplifted sliver of oceanic crust. The interaction between the Ryukyu subduction system and the Taiwan collision zone encompasses a wide region from Taiwan to the longitude 124.5° east. The Gagua Ridge is a boundary between the active deformation zone related to the collision in Taiwan and the West Philippine Basin. It is proposed that there is a tectonic zone that can be traced from the Okinawa Trough on the north to the southern termination of the Gagua Ridge on the south.  相似文献   

6.
根据中国地震台网和ISC台站提供的P波走时资料,使用差异演化全局优化算法(DE算法)和移动窗方法反演了琉球-台湾-吕宋地区岩石层尺度的P波速度结构.在台站和地震分布较为密集的地区,反演窗口为2°×2°,移动步长为1°;在台站和地震较少的地区,反演窗口为4°×4°左右,移动步长为2°.反演结果揭示出琉球-台湾-吕宋地区壳幔结构的横向差异:琉球岛弧西侧受冲绳海槽地幔热扰动的地壳减薄,东侧由于菲律宾海板决的俯冲挤压地壳略有增厚;欧亚大陆与菲律宾海板块的相互碰撞导致台湾地区地壳及岩石层明显增厚;吕宋及菲律宾北部岩石层受岛弧火山下方热流影响较大.结果表明,非线性全局优化算法和移动窗方法能够用于反演较大尺度速度结构的横向变化.  相似文献   

7.
Many major ophiolite bodies can best be explained by detachment and initiation of subduction at a spreading axis in a narrow oceanic basin bordered on the external side by a passive continental foreland margin, followed by subduction of the remnant ocean basin and syn-collision emplacement of the ophiolite and overlying arc system onto the foreland. Evidence from Burma and the Philippines suggests that detachment and subduction at a spreading axis were related to regional compressive stress within an earlier collision belt on the internal side of the ophiolite. In Burma, detachment of a Jurassic ophiolite was in response to foreland thrusting in a Triassic collision belt to the east, while in the western Philippines, detachment of a Palaeocene ophiolite can most easily be explained as a response to back-thrusting in a late Cretaceous collision belt in Mindanao.  相似文献   

8.
天山的晚新生代构造变形及其地球动力学问题   总被引:73,自引:6,他引:73  
张培震  冯先岳 《中国地震》1996,12(2):127-140
天山是大陆内部典型的新生代复活造山带,其新生代构造变形的方式,变形量,速度及过程等对于认识大陆内部造山带的变形机理有着重要的意义。本文在对南北天山主要活动构造地质填图和综合研究的基础上,重点探讨了天山的晚新生代构造变形特征及其动力学问题。早更新世以来,特别是早,中更新世之间,天山的构造活动由内部向南北两侧扩展,使得两侧的新生代凹陷逐渐褶皱成山,形成数排新生代褶皱带,整个天山的现代构造活动是一种扇形  相似文献   

9.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

10.
Southern Central America is a Late Mesozoic/Cenozoic island arc that evolved in response to the subduction of the Farallón Plate beneath the Caribbean Plate in the Late Cretaceous and, from the Oligocene, the Cocos and Nazca Plates. Southern Central America is one of the best studied convergent margins in the world. The aim of this paper is to review the sedimentary and structural evolution of arc‐related sedimentary basins in southern Central America, and to show how the arc developed from a pre‐extensional intra‐oceanic island arc into a doubly‐vergent, subduction orogen. The Cenozoic sedimentary history of southern Central America is placed into the plate tectonic context of existing Caribbean Plate models. From regional basin analysis, the evolution of the southern Central American island arc is subdivided into three phases: (i) non‐extensional stage during the Campanian; (ii) extensional phase during the Maastrichtian‐Oligocene with rapid basin subsidence and deposition of arc‐related, clastic sediments; and (iii) doubly‐vergent, compressional arc phase along the 280 km long southern Costa Rican arc segment related to either oblique subduction of the Nazca plate, west‐to‐east passage of the Nazca–Cocos–Caribbean triple junction, or the subduction of rough oceanic crust of the Cocos Plate. The Pleistocene subduction of the Cocos Ridge contributed to the contraction but was not the primary driver. The architecture of the arc‐related sedimentary basin‐fills has been controlled by four factors: (i) subsidence caused by tectonic mechanisms, linked to the angle and morphology of the incoming plate, as shown by the fact that subduction of aseismic ridges and slab segments with rough crust were important drivers for subduction erosion, controlling the shape of forearc and trench‐slope basins, the lifespan of sedimentary basins, and the subsidence and uplift patterns; (ii) subsidence caused by slab rollback and resulting trench retreat; (iii) eustatic sea‐level changes; and (iv) sediment dispersal systems.  相似文献   

11.
Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird’s Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand trough east of Papua New Guinea and the Miocene Maramuni arc, is not seen in the tomographic images and may require reconsideration of currently accepted tectonic interpretations.  相似文献   

12.
汕头-吕宋岛岩石圈速度结构剖面,划分出华南陆缘古生代陆壳、陆架区晚古生代-中生代陆壳、陆坡带中生代-早第三纪过渡壳、新生代南海海盆洋壳及吕宋岛中生代-新生代岛弧陆壳与东吕宋海槽洋壳等地壳构造组分,并确定了上述地壳构造之间的边界断裂构造及其性质。结合地震震源分布及机制,初步确定了华南陆架盆岭构造带北、南两侧地震构造的控震构造与发震构造性质及其震源力学特征;1)指出1994年9月16日台湾浅滩7.3级地震属于板缘壳幔地震及造成一千公里有感范围的原因;2)马尼拉海沟的海底地堑构造与南海海盆岩石圈地幔上隆是马尼拉海沟俯冲带震源显示正断层性质的原因,且为被动的或转换俯冲带;3)东吕宋海槽仍属于菲律宾海俯冲带性质;吕宋岛东西两侧俯冲带岩石圈板片震源深度的准三层分布,可能表明俯冲带岩石圈板片存在相应的低速滑移层。  相似文献   

13.
The first P-arrival-time data from 513 local earthquakes were analyzed to study lateral variation of the depth to the Conrad and Moho discontinuities beneath the Chugoku and Shikoku districts, southwest Japan, as well as to determine earthquake hypocenters and P-wave station corrections. The depth to the discontinuity was estimated by minimizing the travel-time residuals of more than 8700 first P arrivals observed at 55 seismic stations. The Conrad and Moho discontinuities are located within depth ranges of 15–25 km and 30–40 km, respectively. The Moho is deeper under the mountain area than under the Seto Inland Sea area, and especially deep under the Pacific Coast of the Shikoku district and the mountain area in the Chugoku district. The depth variation of the Moho is quite similar to the Bouguer gravity anomaly distribution and the lateral variations of the P-wave velocity. The deep Moho under the southern Shikoku is located at the portion in which the continental Moho under the island arc meets the oceanic Moho that is the boundary interface between the oceanic crust and the Philippine Sea (PHS) plate dipping toward the back arc. Although there are high mountains in the northern and middle Shikoku, the Moho is not so deep because subduction of the PHS plate prevents the Moho from getting deep, while the Moho is deep due to isostatic balance under the mountain area in the Chugoku district. In addition, we indicated the possibility that the upper boundary of the oceanic crust just above the high-velocity PHS plate is in contact with the deep Moho under the western Chugoku. The contact of the Moho with the oceanic crust can explain the markedly negative gravity anomaly observed in the western Chugoku and the later phase that appears just after the first P arrival from local earthquakes.  相似文献   

14.
新生代渤海中部强烈沉降的物理条件和深部过程   总被引:5,自引:4,他引:1       下载免费PDF全文
新生代时期渤海中部的强烈沉降,是多种物理条件的共同作用结果,这些条件是由裂谷期和后裂谷期的深部过程产生成的.裂谷期在异常热地幔背景下的渤海地壳隆起、减薄、张裂,地幔热物质上升侵入地壳,莫霍界面位置升高,积累了重力势能;后裂谷期岩石圈(层)的冷却、收缩及下地壳的相变导致密度增大,加上巨厚沉积物的持续增生,使地壳处于重力不平衡状态,向下的垂直力远大于向上的浮托力,同时还有东部后退位移性板块边界和下地壳侧向流动的支持,使渤海中部成为下沉速率最快、沉降幅度最大的凹陷盆地.后裂谷期的早期的盆地下沉具有分散、局部性特征,表现为多个凹陷和凸起交替组合格局;晚期转变为大范围的整体沉降,显示重力均衡和补偿过程是从浅往深发展的.先存的郯庐断裂带对沉降的空间范围有局部边界控制性作用,其本身可能受到盆地发展的强烈改造影响.盆地的基本变形机制是上地壳的水平向脆性张破裂和垂直向或近垂直向的正断层-剪切破裂,地震震源机制解和大地震时的地表破裂表现的水平错动反映中、下地壳的走滑-平移型应力状态及相应的瞬间水平剪切破裂,它与上地壳残留的伸展、下沉相容并存于三维地壳体内.  相似文献   

15.
马尼拉俯冲带北段增生楔前缘构造变形和精细结构   总被引:1,自引:0,他引:1       下载免费PDF全文
马尼拉俯冲带是南海的东部边界,记录了南海形成演化的关键信息,同时也是地震和海啸多发区域.本文利用过马尼拉俯冲带北段的高分辨率多道地震剖面,分析了研究区内海盆和海沟的沉积特征,精细刻画了区内增生楔前缘的构造变形、结构以及岩浆活动特征.研究区内增生楔下陆坡部分由盲冲断层、构造楔和叠瓦逆冲断层构成,逆冲断层归并于一条位于下中新统的滑脱面上,滑脱面向海方向的展布明显受到增生楔之下埋藏海山和基底隆起的影响;上陆坡的反射特征则因变形强烈和岩浆作用而难以识别;岩浆活动开始于晚中新世末期并持续至第四纪.马尼拉俯冲带北段增生楔的形成时间早于16.5 Ma,并通过前展式逆冲向南海方向扩展;马尼拉俯冲带的初始形成时间可能在晚渐新世,而此时南海海盆扩张仍在持续.南海东北缘19°N-21°N区域为南海北部陆坡向海盆的延伸,高度减薄的陆壳的俯冲造成马尼拉海沟北段几何形态明显地向东凹进.  相似文献   

16.
中国东部海域岩石圈结构面波层析成像   总被引:11,自引:5,他引:6       下载免费PDF全文
本文通过面波层析成像得到了中国东部海域及邻近地区的地壳上地幔S波速度图像,给出了主要构造单元的区划及其结构特征,并讨论了速度结构与现今构造活动及构造演化历史的关系.研究区内中下地壳的平均速度与地震活动存在比较显著的关系,强震基本都发生在低速区内或高低速过渡区.太行山以东地壳内存在几条北西向低速带,其中张家口—渤海地震带下方的低速带最为显著.东部海域划分成北黄海、南黄海、东海、和冲绳海槽等4个构造块体.北黄海具有较薄较高速的岩石圈,与南华北盆地类似,推测是中生代特提斯洋向北俯冲造成岩石圈减薄的遗迹.北华北地区具有低速的地壳和较厚的岩石圈,岩石圈地幔速度偏低且上下比较均匀,可能反映中生代沿北方缝合带持续碰撞作用的特点.南黄海具有相对较厚的岩石圈,较多地保存了下扬子克拉通的特征.在下扬子与华北地块的拼合过程中,洋壳俯冲可能是北黄海和苏皖地区上地幔低速特征的成因.在125°E以东的朝鲜半岛地区未发现这一拼合过程的遗迹.有可能整个朝鲜半岛都是华北地块的一部分;但也有可能是太平洋俯冲和日本海张开的作用完全改造了朝鲜半岛的岩石圈上地幔,抹去了以往构造运动的痕迹.东海地区的地壳厚度,特别是岩石圈厚度向冲绳海槽方向减小,反映出菲律宾海板块俯冲在弧后广大地区都有影响.冲绳海槽地区可见俯冲的菲律宾海板片以及板片上方显著低速的地壳和上地幔,为冲绳海槽的弧后扩张机制提供了证据.  相似文献   

17.
Collision, subduction and accretion events in the Philippines: A synthesis   总被引:7,自引:0,他引:7  
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas.  相似文献   

18.
Abstract The Molucca Sea is a narrow basin located south of Mindanao (Philippines) and underlined by a north-south ophiolitic ridge. This ridge represents the outer ridge of the Sangihe subduction zone and emerges by uplift in the central part of the basin, in the Talaud Islands. Field studies indicate that forearc sediments rest uncomformably on (i) a dismembered ophiolitic series and (ii) thick melanges. Structural analysis indicates two deformation events, one of which is oriented east-west coaxial with the present state of strain. We interpret the earlier (N20°E) direction as a thrusting event that affected an ophiolitic basement associated with the edge of the Celebes Sea. Thrusting within the oceanic crust and sediments also generated olistostromes (melanges). The style of deformation is characterized by flattened rhombs of peridotites which exists in situ in the upper section of the crustal sequence and were also found inside the melange. Incipient Sangihe subduction around 15 Ma uplifted the deformed crust and buried the melanges beneath the forearc sediments. Recent east-west shortening during subduction of the Snellius Plateau reactivated the melanges within thrusts cutting the forearc series.  相似文献   

19.
Terrane analysis and accretion in North-East Asia   总被引:2,自引:0,他引:2  
Abstract A terrane map of North-East Asia at 1:5 000 000 scale has been compiled. The map shows terranes of different types and ages accreted to the North-Asian craton in the Mesozoic–Cenozoic, sub-and superterranes, together with post-amalgamation and post-accretion assemblages. The great Kolyma-Omolon superterrane adjoins the north-east craton margin. It is composed of large angular terranes of continental affinity: craton fragments and fragments of the passive continental margin of Siberia, and island arc, oceanic and turbidite terranes that are unconformably overlain by shallow marine Middle-Upper Jurassic deposits. The superterrane resulted from a long subduction of the Paleo-Pacific oceanic crust beneath the Alazeya arc. Its south-west boundary is defined by the Late Jurassic Uyandina-Yasachnaya marginal volcanic arc which was brought about by subduction of the oceanic crust that separated the superterrane from Siberia. According to paleomagnetic evidence the width of the basin is estimated to be 1500–2000 km. Accretion of the superterrane to Siberia is dated to the late Late Jurassic-Neocomian. The north-east superterrane boundary is defined by the Lyakhov-South Anyui suture which extends across southern Chukotka up to Alaska. Collision of the superterrane with the Chukotka shelf terrane is dated to the middle of the Cretaceous. The Okhotsk-Chukotka belt, composed of Albian-Late Cretaceous undeformed continental volcan-ites, defines the Cretaceous margin of North Asia. Terranes eastward of the belt are mainly of oceanic affinity: island arc upon oceanic crust, accretion wedge and turbidite terranes, as well as cratonic terranes and fragments of magmatic arcs on the continental crust and metamorphic terranes of unclear origin and age. The time of their accretion is constrained by post-accretionary volcanic belts that extend parallel to the Okhotsk-Chukotka belt but are displaced to the east: the Maastrichtian-Miocene Kamchatka-Koryak belt and the Eocene-Quaternary Central Kamchatka belt which mark active margins of the continent of corresponding ages.  相似文献   

20.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号