首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-spherical chondrules (arbitrarily defined as having aspect ratios ≥1.20) in CO3.0 chondrites comprise multi-lobate, distended, and highly irregular objects with rounded margins; they constitute ∼70% of the type-I (low-FeO) porphyritic chondrules in Y-81020, ∼75% of such chondrules in ALHA77307, and ∼60% of those in Colony. Although the proportion of non-spherical type-I chondrules in LL3.0 Semarkona is comparable (∼60%), multi-lobate OC porphyritic chondrules (with lobe heights equivalent to a significant fraction of the mean chondrule diameter) are rare. If the non-spherical type-I chondrules in CO chondrites had formed from totally molten droplets, calculations indicate that they would have collapsed into spheres within ∼10−3 s, too little time for their 20-μm-size olivine phenocrysts to have grown from the melt. These olivine grains must therefore be relicts from an earlier chondrule generation; the final heating episode experienced by the non-spherical chondrules involved only minor amounts of melting and crystallization. The immediate precursors of the individual non-spherical chondrules may have been irregularly shaped chondrule fragments whose fracture surfaces were rounded during melting. Because non-spherical chondrules and “circular” chondrules form a continuum in shape and have similar grain sizes, mineral and mesostasis compositions, and modal abundances of non-opaque phases, they must have formed by related processes. We conclude that a large majority of low-FeO chondrules in CO3 chondrites experienced a late, low-degree melting event. Previous studies have shown that essentially all type-II (high-FeO) porphyritic chondrules in Y-81020 formed by repeated episodes of low-degree melting. It thus appears that the type-I and type-II porphyritic chondrules in Y-81020 (and, presumably, all CO3 chondrites) experienced analogous formation histories. Because these two types constitute ∼95% of all CO chondrules, it is clear that chondrule recycling was the rule in the CO chondrule-formation region and that most melting events produced only low degrees of melting. The rarity of significantly non-spherical, multi-lobate chondrules in Semarkona may reflect more-intense heating of chondrule precursors in the ordinary-chondrite region of the solar nebula.  相似文献   

2.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

3.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

4.
Petrologic studies were made on the fine-grained matrices of type 3 ordinary chondrites of the lowest petrologic subtype. The matrix minerals, in order of abundance, are olivine (Fo99 to Fo9), enstatite or bronzite, augite or subcalcic augite, albite, Fe-Ni metal, troilite, magnetite, spinel (MgAl2O4), chromite, and calcite. Fe- and Mg-rich fluffy particles and albite-like particles are also major constituents. The chemical compositions of olivine and pyroxenes vary within and among the chondrites and are in gross disequilibrium, showing that the matrix materials were hardly heated after their formation. Textural relationships indicate that magnesian olivine was formed after Ca-pyroxene, followed by intermediate to iron-rich olivine. Intermediate olivine was formed from enstatite and metallic iron under relatively oxidizing conditions. The observations indicate that matrices of chondrites are neither the fragments of chondrules nor the precursors of chondrules. They were mostly the products of condensation and reaction among solids and/or between solids and the ambient gas mostly at low temperatures, and thus they contain records of primitive processes in the nebula. In order to explain the presence of olivines more iron-rich than Fo50, the presence of free SiO2 or a high activity of SiO2 in the gas is necessary, which was not shown in previous thermochemical calculations. Mineral assemblages of matrix minerals of chondrites of different chemical groups differ systematically according to oxidation state of the parental meteorites, indicating that they were formed at different oxygen fugacities. The rims of chondrules, and surrounding matrix materials, must have accreted onto chondrules during turbulent movements of the nebula.  相似文献   

5.
In the Piancaldoli LL3 chondrite, we found a mm-sized clast containing ~100 chondrules 0.2–64 μm in apparent diameter (much smaller than any previously reported) that are all of the same textural type (radial pyroxene; FS1–17). This clast, like other type 3 chondrites, has a fine-grained Ferich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si- and Cr-bearing metallic Fe,Ni. However, the very high modal matrix abundance (63 ± 8 vol. %), unique characteristics of the chondrules, and absence of microscopically-observable olivine indicate that the clast is a new kind of type 3 chondrite. Most chondrules have FeO-rich edges, and chondrule size is inversely correlated with chondrule-core FeO concentration (the first reported correlation of chondrule size and composition). Chondrules acquired Fe by diffusion from Fe-rich matrix material during mild metamorphism, possibly before final consolidation of the rock. Microchondrules (those chondrules ? 100 μm in diameter) are also abundant in another new kind of type 3 chondrite clast in the Rio Negro L chondrite regolith breccia. In other type 3 chondrite groups, microchondrule abundance appears to be anticorrelated with mean chondrule size, viz. 0.02–0.04 vol. % in H and CO chondrites and ?0.006 vol. % in L, LL, and CV chondrites.Microchondrules probably formed by the same process that formed normal-sized droplet chondrules: melting of pre-existing dustballs. Because most compound chondrules in the clast and other type 3 chondrites formed by collisions between chondrules of the same textural type, we suggest that dust grains were mineralogically sorted in the nebula before aggregating into dustballs. The sizes of compound chondrules and chondrule craters, which resulted from collisions of similarly-sized chondrules while they were plastic, indicate that size-sorting (of dustballs) occurred before chondrule formation, probably by aerodynamic processes in the nebula. We predict that other kinds of type 3 chondrites exist which contain chondrule abundances, size-ranges and proportions of textural types different from known chondrite groups.  相似文献   

6.
Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.  相似文献   

7.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   

8.
The oxygen three-isotope systematics of 36 chondrules from the Allende CV3 chondrite are reported using high precision secondary ion mass spectrometer (CAMECA IMS-1280). Twenty-six chondrules have shown internally homogenous Δ17O values among olivine, pyroxene, and spinel within a single chondrule. The average Δ17O values of 19 FeO-poor chondrules (13 porphyritic chondrules, 2 barred olivine chondrules, and 4 chondrule fragments) show a peak at −5.3 ± 0.6‰ (2SD). Another 5 porphyritic chondrules including both FeO-poor and FeO-rich ones show average Δ17O values between −3‰ and −2‰, and 2 other FeO-poor barred olivine chondrules show average Δ17O values of −3.6‰ and 0‰. These results are similar to those for Acfer 094 chondrules, showing bimodal Δ17O values at −5‰ and −2‰. Nine porphyritic chondrules contain olivine grains with heterogeneous Δ17O values as low as −18‰, indicating that they are relict olivine grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The Δ17O values of four barred olivine chondrules range from −5‰ to 0‰, indicating that not all BO chondrules plot near the terrestrial fractionation line as suggested by previous bulk chondrule analyses. Based on these data, we suggest the presence of multiple oxygen isotope reservoirs in local dust-rich protoplanetary disk, from which the CV3 parent asteroid formed.A compilation of 225 olivine and low-Ca pyroxene isotopic data from 36 chondrules analyzed in the present study lie between carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines. These data define a correlation line of δ17O = (0.982 ± 0.019) × δ18O − (2.91 ± 0.10), which is similar to those defined by chondrules in CV3 chondrites and Acfer 094 in previous studies. Plagioclase analyses in two chondrules plot slightly below the CCAM line with Δ17O values of −2.6‰, which might be the result of oxygen isotope exchange between chondrule mesostasis and aqueous fluid in the CV parent body.  相似文献   

9.
It has been recently suggested that (1) CH chondrites and the CBb/CH-like chondrite Isheyevo contain two populations of chondrules formed by different processes: (i) magnesian non-porphyritic (cryptocrystalline and barred) chondrules, which are similar to those in the CB chondrites and formed in an impact-generated plume of melt and gas resulted from large-scale asteroidal collision, and (ii) porphyritic chondrules formed by melting of solid precursors in the solar nebula. (2) Porphyritic chondrules in Isheyevo and CH chondrites are different from porphyritic chondrules in other carbonaceous chondrites ( [Krot et al., 2005], [Krot et al., 2008a] and [Krot et al., 2008b]). In order to test these hypotheses, we measured in situ oxygen isotopic compositions of porphyritic (magnesian, Type I and ferroan, Type II) and non-porphyritic (magnesian and ferroan cryptocrystalline) chondrules from Isheyevo and CBb chondrites MAC 02675 and QUE 94627, paired with QUE 94611, using a Cameca ims-1280 ion microprobe.On a three-isotope oxygen diagram (δ17O vs. δ18O), compositions of chondrules measured follow approximately slope-1 line. Data for 19 magnesian cryptocrystalline chondrules from Isheyevo, 24 magnesian cryptocrystalline chondrules and 6 magnesian cryptocrystalline silicate inclusions inside chemically-zoned Fe,Ni-metal condensates from CBb chondrites have nearly identical compositions: Δ17O = −2.2 ± 0.9‰, −2.3 ± 0.6‰ and −2.2 ± 1.0‰ (2σ), respectively. These observations and isotopically light magnesium compositions of cryptocrystalline magnesian chondrules in CBb chondrites (Gounelle et al., 2007) are consistent with their single-stage origin, possibly as gas-melt condensates in an impact-generated plume. In contrast, Δ17O values for 11 Type I and 9 Type II chondrules from Isheyevo range from −5‰ to +4‰ and from −17‰ to +3‰, respectively. In contrast to typical chondrules from carbonaceous chondrites, seven out of 11 Type I chondrules from Isheyevo plot above the terrestrial fractionation line. We conclude that (i) porphyritic chondrules in Isheyevo belong to a unique population of objects, suggesting formation either in a different nebular region or at a different time than chondrules from other carbonaceous chondrites; (ii) Isheyevo, CB and CH chondrites are genetically related meteorites: they contain non-porphyritic chondrules produced during the same highly-energetic event, probably large-scale asteroidal collision; (iii) the differences in mineralogy, petrography, chemical and whole-rock oxygen isotopic compositions between CH and CB chondrites are due to various proportions of the nebular and the impact-produced materials.  相似文献   

10.
We report high precision SIMS oxygen three isotope analyses of 36 chondrules from some of the least equilibrated LL3 chondrites, and find systematic variations in oxygen isotope ratios with chondrule types. FeO-poor (type I) chondrules generally plot along a mass dependent fractionation line (Δ17O ∼ 0.7‰), with δ18O values lower in olivine-rich (IA) than pyroxene-rich (IB) chondrules. Data from FeO-rich (type II) chondrules show a limited range of δ18O and δ17O values at δ18O = 4.5‰, δ17O = 2.9‰, and Δ17O = 0.5‰, which is slightly 16O-enriched relative to bulk LL chondrites (Δ17O ∼ 1.3‰). Data from four chondrules show 16O-rich oxygen isotope ratios that plot near the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Glass analyses in selected chondrules are systematically higher than co-existing minerals in both δ18O and Δ17O values, whereas high-Ca pyroxene data in the same chondrule are similar to those in olivine and pyroxene phenocrysts.Our results suggest that the LL chondrite chondrule-forming region contained two kinds of solid precursors, (1) 16O-poor precursors with Δ17O > 1.6‰ and (2) 16O-rich solid precursors derived from the same oxygen isotope reservoir as carbonaceous chondrites. Oxygen isotopes exhibited open system behavior during chondrule formation, and the interaction between the solid and ambient gas might occur as described in the following model. Significant evaporation and recondensation of solid precursors caused a large mass-dependent fractionation due to either kinetic or equilibrium isotope exchange between gas and solid to form type IA chondrules with higher bulk Mg/Si ratios. Type II chondrules formed under elevated dust/gas ratios and with water ice in the precursors, in which the ambient H2O gas homogenized chondrule melts by isotope exchange. Low temperature oxygen isotope exchange may have occurred between chondrule glasses and aqueous fluids with high Δ17O (∼5‰) in LL the parent body. According to our model, oxygen isotope ratios of chondrules were strongly influenced by the local solid precursors in the proto-planetary disk and the ambient gas during chondrule melting events.  相似文献   

11.
Major and minor element bulk compositions of 90 individual chondrules and 16 compound chondrule sets in unequilibrated (type 3) H-group chondrites were determined in polished thin sections by broad beam electron probe analysis and the chondrules were classified petrographically into six textural types (barred olivine, porphyritic olivine, porphyritic pyroxene, barred pyroxene, radiating pyroxene, fine-grained). Although analyses of individual chondrules scatter widely, the mean composition of each textural type (except barred pyroxene) is rather distinct, as verified by discriminant function analysis. Al2O3, TiO2 and Na3O are correlated in chondrules, but Al2O3 and CaO do not correlate. Compound chondrule sets were found to consist almost entirely of chondrules or partial chondrules of similar texture and composition.The data suggest that composition played a conspicuous role in producing the observed textures of chondrules, though other factors such as cooling rates and degrees of supercooling prior to nucleation were also important. If compound chondrules formed and joined when they were still molten or plastic, then the data suggest that chondrules of each textural type could have formed together in space or time. The correlation of Al2O3 and TiO2 with Na2O and not with CaO appears to rule out formation of chondrules by direct equilibrium condensation from the nebula. We conclude that the most reasonable model for formation of the majority of chondrules is that they originated from mixtures of differing fractions of high-, intermediate- and low-temperature nebular condensates that underwent melting in space. A small percentage of chondrules might have formed by impacts in meteorite parent-body regoliths.  相似文献   

12.
Major and minor element bulk compositions of 373 individual chondrules from 18 H3 to H6 chondrites were determined in polished thin sections by broad-beam electron probe analysis. Bulk chondrule FeO and Al2O3 increase and TiO2 and Cr2O3 decrease with increasing petrologic type; normative fayalite, albite and plagioclase increase through the petrologic sequence. Chondrule diameters correlate with phenocryst sizes in porphyritic chondrules of type 3 chondrites, but this correlation is diminished in the higher petrologic types. Furthermore, for a given chondrule diameter, phenocryst sizes are larger in the higher petrologic types. We attribute most compositional trends in chondrules through the petrologic sequence to diffusion and equilibration among chondrules and between chondrules and matrix in response to increasing degrees of thermal metamorphism. Increased phenocryst sizes in the higher petrologic types are probably the result of grain growth during metamorphism.We suggest that H-group chondrites formed by accretion of high-temperature (chondrules) and low-temperature (matrix) materials. Parent materials of each of the petrologic types resembled type 3 chondrites, but had slight compositional differences (e.g. volatiles, rare gases, total iron) inherited during accretion. These differences were predominantly functions of decreasing temperature in the nebula as accretion progressed. Internal reheating of the parent materials to different temperatures and (probably) for different times, as a function of depth in the parent body, caused compositional equilibration, grain coarsening, and reduction of FeO to Fe° by carbon.  相似文献   

13.
Due to their common occurrence in various types of chondrites, igneous rims formed on pre-existing chondrules throughout chondrule-forming regions of the solar nebula. Although the peak temperatures are thought to reach similar values to those achieved during chondrule formation events, the heating duration in chondrule rim formation has not been well defined. We determined the two-dimensional chemical and oxygen isotopic distributions in an igneous rim of a chondrule within the Northwest Africa 3118 CV3oxA chondrite with sub-micrometer resolution using secondary ion mass spectrometry and scanning electron microscopy. The igneous rim experienced aqueous alteration on the CV parent body. The aqueous alteration resulted in precipitation of the secondary FeO-rich olivine (Fa40–49) and slightly disturbed the Fe-Mg distribution in the MgO-rich olivine phenocrysts (Fa11–22) at about a 1 μm scale. However, no oxygen isotopic disturbances were observed at a scale greater than 100 nm. The MgO-rich olivine, a primary phase of igneous rim formation, has δ17O = −6 ± 3‰ and δ18O = −1 ± 4‰, and some grains contain extreme 16O-rich areas (δ17O, δ18O = ∼−30‰) nearly 10 μm across. We detected oxygen isotopic migration of approximately 1 μm at the boundaries of the extreme 16O-rich areas. Using oxygen self-diffusivity in olivine, the heating time of the igneous rim formation could have continued from several hours to several days at near liquidus temperatures (∼2000 K) in the solar nebula suggesting that the rim formed by a similar flash heating event that formed the chondrules.  相似文献   

14.
Glass inclusions in olivines of the Renazzo, El Djouf 001, and Acfer 182 CR-type chondrites are chemically divers and can be classified into Al-rich, Al-poor, and Na-rich types. The chemical properties of the glasses are independent of the occurrence of the olivine (isolated or part of an aggregate or chondrule) and its composition. The glasses are silica-saturated (Al-rich) or oversaturated (Al-poor, 24% normative quartz). All glasses have chondritic CaO/Al2O3 ratios, unfractionated CI-normalized abundances of refractory trace elements and are depleted in moderately volatile and volatile elements. Thus the glasses are likely to be of a primitive condensate origin whose chemical composition has been established before chondrule formation and accretion, rather then the product of either crystal fractionation from chondrule melts or part melting of chondrules. Rare Na-rich glasses give evidence for elemental exchange between the glass and a vapor phase. Because they have Al2O3 contents and trace element abundances very similar to those of the Al-rich glasses, they likely were derived from the latter by Ca exchange (for Na) with the nebula. Elemental exchange reactions also have affected practically all olivines (e.g., exchange of Mg of olivine for Fe2+, Mn2+, and Cr3+). Glasses formed contemporaneously with the host olivine. As the most likely process for growing nonskeletal olivines from a vapor we consider the VLS (vapor-liquid-solid) growth process, or liquid-phase epitaxy. Glasses are the possible remnants of the liquid interface between growing crystal and the vapor. Such liquids can form stably or metastably in regions with enhanced oxygen fugacity as compared to that of a nebula of solar composition.  相似文献   

15.
Fifty-eight chondrules were separated from the Dhajala H3.8 chondrite and their thermoluminescence properties were measured. Chips from 30 of the chondrules were examined petrographically and with electron-microprobe techniques; the bulk compositions of 30 chondrules were determined by the fused bead technique. Porphyritic chondrules, especially 5 which have particularly high contents of mesostasis, tend to have higher TL (mass-normalized) than non-porphyritic chondrules. Significant correlations between log(TL) and the bulk CaO, Al2O3 and MnO content of the chondrules, and between log(TL) and the CaO, Al2O3, SiO2 and normative anorthite content of the chondrule glass, indicate an association between TL and the abundance and composition of mesostasis. Unequilibrated chondrules ( i.e. those whose olivine is compositionally heterogeneous and high in Ca) have low TL, whereas equilibrated chondrules have a wide range of TL, depending on their chemical and petrographic properties.We suggest that the TL level in a given chondrule is governed by its bulk composition (which largely determined the abundance and composition of constituent glass) and by metamorphism (which devitrfied the glass in those chondrules with high Ca glass to produce the TL phosphor). We also suggest that one reason why certain chondrules in type 3 ordinary chondrites are unequilibrated, while others are equilibrated, is that the mesostasis of the unequilibrated chondrules resisted the devitrification. This devitrification is necessary for the diffusive communication between chondrule grains and matrix that enables equilibration.  相似文献   

16.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

17.
The abundance of metallic iron is highly variable in different kinds of chondrites. The precise mechanism by which metal fractionation occurred and its place in time relative to chondrule formation are unknown. As metallic iron is abundant in most Type I (FeO-poor) chondrules, determining under what conditions metal could form in chondrules is of great interest. Assuming chondrules were formed from low temperature nebular condensate, we heated an anhydrous CI-like material at 1580°C in conditions similar to those of the canonical nebula (PH2 = 1.3 × 10−5 atm). We reproduced many of the characteristics of Type IA and IIA chondrules but none of them contained any iron metal. In these experiments FeO was abundant in charges that were heated for as long as 6 h. At a lower temperature, 1350°C, dendritic/cellular metal crystallized from Fe-FeS melts during the evaporation of S. However, the silicate portion consisted of many relict grains and vesicles, not typical of chondrules.Evaporation experiments conducted at PH2 = 1 atm and 1565°C produced charges containing metallic iron both as melt droplets and inclusions in olivine, similar to those found in chondrules. Formation of iron in these experiments was primarily the result of desulfurization of FeS. With long heating times Fe° was lost by evaporation. Apart from some reduction of FeO by kerogen to make metal inclusions within olivine grains, reduction of FeO to make Fe° in these charges was not observed.This study shows that under canonical nebular conditions FeS and iron-metal are extremely volatile so that metal-rich Type I chondrules could not form by melting “CI.” Under these conditions FeO is lost predominantly by hydrogen stripping and, due to the relative low abundance of hydrogen at low pressures, remains in the melt for as long as 6 h. Conversely, at higher total pressures (1-atm H2) iron metal (produced mainly by the desulfurization of troilite) is less volatile and remains in the melt for longer times (at least 6 h). In addition, due to elevated pressures of hydrogen, FeO is stripped away much faster. These results suggest that chondrule formation occurred in environments with elevated pressures relative to the canonical nebula for iron metal to be present.  相似文献   

18.
Fine (?2 μm), Ni-poor (? 10 mg/g) Fe-Ni grains are common inclusions in the olivine in porphyritic chondrules in unequilibrated ordinary chondrites. The olivine grains appear to be relicts that survived chondrule formation without melting. The most common occurrence of this “dusty” metal is in the core of olivine grains having clear Fe-poor rims and surrounded either by small euhedral clear olivine grains zoned with FeO increasing toward the border of the grains or by large elongated Fe-poor orthopyroxenes oriented parallel to the chondrule surface and enclosing small round olivine grains. Various amounts of Ca, Al-rich glass are always present. The dusty metal is occasionally found in the rims of olivine grains either isolated in the matrix or included in chondrules. A rare occurrence is as bands in highly deformed olivines.This dusty metal appears to be the product of in situ reduction of FeO from the host olivine. Among the possible reductants H2 or carbonaceous matter (CH2)n seem the most likely. Hydrogen may have been implanted by solar-wind or solar-flare irradiation, but this requires that dissipation of nebular gas occurred before the end of the chondrule formation process. Carbonaceous matter may have been implanted by shock. Less likely reductants are nebular CO or C dissolved in the olivine lattice. The large relict olivine grains may be nebular condensates or, more likely, fragments broken off earlier generations of chondrules.  相似文献   

19.
Relatively coarse-grained rims occur around all types of chondrules in type 3 carbonaceous and ordinary chondrites. Those in H-L-LL3 chondrites are composed primarily of olivine and low-Ca pyroxene; those in CV3 chondrites contain much less low-Ca pyroxene. Average grain sizes range from ~4 μm in H-L-LL3 chondrites to ~10 μm in CV3 chondrites. Such rims surround ~50%, ~10% and ≤ 1% of chondrules in CV3, H-L-LL3 and CO3 chondrites, respectively, but are rare (≤1%) around CV3 Ca,Al-rich inclusions. Rim thicknesses average ~150 μm in H-L-LL3 chondrites and ~400 μm in CV3 chondrites.The rims in H-L-LL3 chondrites are composed of material very similar to that which comprises darkzoned chondrules and recrysiallized matrix. Dark-zoned chondrules and coarse-grained rims probably formed in the solar nebula from clumps of opaque matrix material heated to sub-solidus to sub-liquidus temperatures during chondrule formation. Mechanisms capable of completely melting some material while only sintering other material require steep thermal gradients; suitable processes are lightning, reconnecting magnetic field lines and, possibly, aerodynamic drag heating.CV chondrites may have formed in a region where the chondrule formation mechanism was less efficient, probably at greater solar distances than the ordinary chondrites. The lesser efficiency of heating could be responsible for the greater abundance of coarse-grained rims around CV chondrules. Alternatively, CV chondrules may have suffered fewer particle collisions prior to agglomeration.  相似文献   

20.
Experiments were conducted under canonical nebular conditions to see whether the chemical compositions of the various chondrule types can be derived from a single CI-like starting material by open-system melting and evaporation. Experimental charges, produced at 1580 °C and PH2 of 1.31×10−5 atm over 1 to 18 hours, consisted of only two phases, porphyritic olivine crystals in glass. Sulfur, metallic-iron and alkalis were completely evaporated in the first minutes of the experiments and subsequently the main evaporating liquid oxides were FeO and SiO2. Olivines from short runs (2-4 hours) have compositions of Fo83-Fo89, as in Type IIA chondrules, while longer experimental runs (12-18 hours) produce ∼Fo99 olivine, similar to Type IA chondrules. The concentration of CaO in both olivine (up to 0.6 wt.%) and glass, and their Mg#, increased with increasing heating duration. Natural chondrules also show increasing CaO with decreasing S, alkalis, FeO and SiO2. The similarities in bulk chemistry, mineralogy and textures between Type IIA and IA chondrules and the experimental charges demonstrate that these chondrules could have formed by the evaporation of CI precursors. The formation of silica-rich chondrules (IIB and IB) by evaporation requires a more pyroxene-rich precursor.Based on the FeO evaporation rates measured here, Type IIA and IA chondrules, were heated for at least ∼0.5 and ∼3.5 h, respectively, if formed at 1580 °C and PH2 of 1.31×10−5 atm. Type II chondrules may have experienced higher cooling-rates and less evaporation than Type I.The experimental charges experienced free evaporation and exhibited heavy isotopic enrichments in silicon, as well as zero concentrations of S, Na and K, which are not observed in natural chondrules. However, experiments on potassium-rich melts at the same pressure but in closed capsules showed less evaporation of K, and less K isotopic mass fractionation, than expected as a function of decreasing cooling rate. Thus the environment in which chondrules formed is as important as the kinetic processes they experienced. If chondrule formation occurred under conditions in which evaporated gases remained in the vicinity of the residual melts, the extent of evaporation would be reduced and back reaction between the gas and the melt could contribute to the suppression of isotopic mass fractionation. Hence chondrule formation could have involved evaporative loss without Rayleigh fractionation. Volatile-rich Type II and volatile-poor Type I chondrules may have formed in domains with high and low chondrule concentrations, and high partial pressures of lithophile elements, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号