首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LaPaz Icefield 02205 (LAP 02205) is a new low-Ti mare-basalt meteorite that was discovered in the LaPaz Ice Field in Antarctica. This is the first crystalline lunar basalt in the US Antarctic collection and the only 5th unbrecciated mare-basalt meteorite to be discovered to date. The rock has a typical basaltic texture with tabular and elongated pyroxene and plagioclase crystals, and minor olivine grains commonly rimmed by pyroxenes. Core- to rim-zoning in terms of Fe and Mg is present in almost all pyroxene grains. Accessory minerals include ilmenite, chromite, ulvöspinel, troilite, and FeNi metal. This rock is highly enriched in late-stage mesostasis. Free silica is also abundant. In terms of texture and mineralogy, LAP 02205 displays features of low-Ti mare basalts, with similarities to some low-Ti Apollo 12 and Apollo 15 basalts. Whole-rock major- and trace-element compositions confirm the highly fractionated nature of this basalt. The whole-rock REE contents of the meteorite are the highest among all known low-Ti mare basalts. The platinum group element (PGE) contents in LAP are also enriched suggesting the possibility of endogenously enriched source regions or the PGEs generally behaved as incompatible elements during crystal fractionation under low fO2 conditions. Trace-element contents of mineral grains in LAP 02205 display wide variations, suggesting extensive non-equilibrium crystallization. The REE concentrations in the earliest-formed minerals provide constraints on the composition of the parental liquid, which is similar to the measured whole-rock composition. Crystallization modeling of the LAP 02205 bulk composition yields a reasonable fit between predicted and observed mineral phases and compositions, except for the high-Mg olivine cores, which are observed in the rock but not predicted by the modeling. An isochron age of 2929 ± 150 Ma for phosphate minerals makes this rock one of the youngest lunar basalts known to date. The young age and specific geochemical characteristics of LAP distinguish it from those of most other low-Ti mare basalts. However, the low-Ti mare basalt meteorite, NWA 032, has a similar young age, and the two meteorites also appear to be closely related from some geochemical perspectives and might have originated from similar source regions on the Moon.  相似文献   

2.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

3.
To investigate the formation and early evolution of the lunar mantle and crust we have analysed the oxygen isotopic composition, titanium content and modal mineralogy of a suite of lunar basalts. Our sample set included eight low-Ti basalts from the Apollo 12 and 15 collections, and 12 high-Ti basalts from Apollo 11 and 17 collections. In addition, we have determined the oxygen isotopic composition of an Apollo 15 KREEP (K - potassium, REE - Rare Earth Element, and P - phosphorus) basalt (sample 15386) and an Apollo 14 feldspathic mare basalt (sample 14053). Our data display a continuum in bulk-rock δ18O values, from relatively low values in the most Ti-rich samples to higher values in the Ti-poor samples, with the Apollo 11 sample suite partially bridging the gap. Calculation of bulk-rock δ18O values, using a combination of previously published oxygen isotope data on mineral separates from lunar basalts, and modal mineralogy (determined in this study), match with the measured bulk-rock δ18O values. This demonstrates that differences in mineral modal assemblage produce differences in mare basalt δ18O bulk-rock values. Differences between the low- and high-Ti mare basalts appear to be largely a reflection of mantle-source heterogeneities, and in particular, the highly variable distribution of ilmenite within the lunar mantle. Bulk δ18O variation in mare basalts is also controlled by fractional crystallisation of a few key mineral phases. Thus, ilmenite fractionation is important in the case of high-Ti Apollo 17 samples, whereas olivine plays a more dominant role for the low-Ti Apollo 12 samples.Consistent with the results of previous studies, our data reveal no detectable difference between the Δ17O of the Earth and Moon. The fact that oxygen three-isotope studies have been unable to detect a measurable difference at such high precisions reinforces doubts about the giant impact hypothesis as presently formulated.  相似文献   

4.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

5.
Miller Range (MIL) 05035 is a lunar gabbroic meteorite. The mineralogy, Fe/Mn ratios in olivine and pyroxene, bulk-rock chemical composition and the bulk oxygen isotope values (δ17O = 2.86-2.97‰ and δ18O = 5.47-5.71‰) are similar to those of other mare basalts, and are taken as supporting evidence for a lunar origin for this meteorite. The sample is dominated by pyroxene grains (54-61% by area mode of thin section) along with large plagioclase feldspar (25-36% by mode) and accessory quartz, ilmenite, spinel, apatite and troilite. The bulk-rock major element composition of MIL 05035 indicates that the sample has a very low-Ti (VLT) to low-Ti lunar heritage (we measure bulk TiO2 to be 0.9 Wt.%) and has low bulk incompatible trace element (ITE) concentrations, akin to samples from the VLT mare basalt suite. To account for these geochemical characteristics we hypothesize that MIL 05035’s parental melt was derived from a mantle region dominated by early cumulates of the magma ocean (comprised principally of olivine and orthopyroxene). MIL 05035 is likely launch paired with the Asuka-881757 and Yamato-793169 basaltic lunar meteorites and the basaltic regolith breccia MET 01210. This group of meteorites (Y/A/M/M) therefore may be a part of a stratigraphic column consisting of an upper regolith environment underlain by a coarsening downwards basalt lava flow.  相似文献   

6.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

7.
The Precambrian Sierra Ancha sill complex, more than 700 feet thick, is a multiple intrusion with a central layer of feldspathic olivine-rich diabase, and upper and lower layers of olivine diabase derived from a high-alumina basalt magma. Minor rock types include albite diabase and albite-diabase pegmatite. Deuteric alteration was extensive. Principal primary minerals are plagioclase (An72 to An16), augite (Wo43En44Fs13 to Wo40En38Fs22), olivine (Fo74 to Fo54), orthopyroxene (En77 to En44), magnetite (Mgt66Usp34 to Mgt89Usp11), and ilmenite (Ilm86Hem14 to Ilm96Hem4). Ilmenite formed by reaction-exsolution from magnetitess is consistently different in compositon from primary ilmenite. Primary ilmenite became enriched in Mn and depleted in Mg as crystallization proceded. A systematic Fe-Mg partition between contacting olivine and orthopyroxene suggests that equilibrium prevailed on an extremely local scale during crystallization. Albite-diabase pegmatite contains a mineral assemblage including augite, ferrosalite (Wo49En28Fs23 to Wo49En14Fs37), albite (An2 to An0), and iron-rich chlorite. Altered diabase and albite diabase also have unusually calcium-rich pyroxenes. The calcium-rich pyroxenes, which occur in assemblages like those characterizing some spilites, are richer in calcium and lower in aluminum and titanium than basaltic augite.Contribution No. 1712 of the Division of Geological Sciences, California Institute of Technology, Pasadena, California.  相似文献   

8.
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1-2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991 ± 14 Ma, with an initial 87Sr/88Sr at the time of crystallization of 0.699836 ± 0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992 ± 85 (initial ε143Nd = +2.9 ± 0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated 147Sm/144Nd source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.  相似文献   

9.
Apollo 15 low-Ti mare basalts have traditionally been subdivided into olivine- and quartz-normative basalt types, based on their different SiO2, FeO, and TiO2 whole-rock compositions. Previous studies have reconciled this compositional diversity by considering the olivine- and quartz-normative basalts as originating from different lunar mantle source regions. To provide new information on the compositions of Apollo 15 low-Ti mare basalt parental magmas, we report a study of major and trace-element compositions of whole rocks, pyroxenes, and other phases in the olivine-normative basalts 15016 and 15555 and quartz-normative basalts 15475 and 15499. Results show similar rare-earth-element patterns in pyroxenes from all four basalts. The estimated equilibrium parental-melt compositions from the trace-element compositions of pyroxenes are similar for 15016, 15555 and 15499. Additionally, an independent set of trace-element distribution coefficients has been determined from measured pyroxene and mesostasis compositions in sample 15499. These data suggest that fractional crystallization may be a viable alternative to compositional differences in the mantle source to explain the 25% difference in whole-rock TiO2, and corresponding differences in SiO2 and FeO between the Apollo 15 olivine- and quartz-normative basalts. In this model, the older (3.35 Ga) quartz-normative basalts, with lower TiO2 experienced olivine, chromite, and Cr-ulvöspinel fractionation at ‘crustal levels’ in magma chambers or dikes, followed by limited near-surface mineral fractionation, within the lava flows. In contrast, the younger (3.25 Ga) olivine-normative basalts experienced only limited magmatic differentiation at ‘crustal-levels’, but extensive near-surface mineral fractionation to produce their evolved mineral compositions. A two-stage mineral-fractionation model is consistent with textural and mineralogical observations, as well as the mineral trace-element constraints developed by this study.  相似文献   

10.
The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass 60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan, alkali-rich, and moderately titaniferous; they are unlike any previously recognized lunar lithology or glass group. Their likely provenance is within the Procellarum KREEP Terrane, but they are not found within the Apollo 16 ancient regolith breccias and therefore were likely deposited at the Apollo 16 site post-Imbrium. The basaltic-andesite glasses are the most ferroan variety of KREEP yet discovered.  相似文献   

11.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

12.
Northeast Africa 003 (NEA 003) is a lunar meteorite found as a two paired stones (6 and 118 g) in Libya, 2000 and 2001. The main portion (∼75 vol%) of the 118 g meteorite, used for this study, (NEA 003-A) consists of mare-basalt and a smaller adjacent portion (∼25 vol%) is a basaltic breccia (NEA 003-B). NEA 003-A has a coarse-grained magmatic texture consisting mainly of olivine, pyroxene and plagioclase. The late-stage mineral association is composed mainly of elongated plagioclase, ilmenite, troilite, fayalite, Si-K-rich glass, apatite, and a rare SiO2 phase. Other accessory minerals include ulvöspinel, chromite, and trace Fe-Ni metal. Olivine and pyroxene contain shock-induced fractures, and plagioclase is completely converted into maskelynite.The Fe/Mn values of the whole rock, olivines and pyroxenes, and the bulk-rock oxygen isotopic composition provide evidence for the lunar origin of NEA 003-A meteorite. This is further supported by the presence of Fe-Ni metal and the anhydrous mineral association.NEA 003-A is geochemically and petrographically distinct from previously described mare-basalt meteorites and is not paired with any of them. The petrography and major element composition of NEA 003-A is similar to the composition of low-Ti olivine mare basalts from Apollo 12 and olivine-normative basalts from Apollo 15. The NEA 003-A meteorite shows obvious geochemical similarities in trace elements contents with Apollo 15 olivine-normative basalts and could represent a yet unknown geochemically primitive member of the olivine-normative basalt series. The meteorite is depleted in rare earth elements (REE) and incompatible trace elements indicating a primitive character of the parental magma. The bulk-rock chemical composition demonstrates that the parent melt of NEA 003-A was not contaminated with KREEP components as a result of magma mixing or assimilation processes. Results of crystallization modelling and low minimum cooling rate estimates (∼0.07 °C/h) suggest that the parent melt of NEA 003-A crystallized in the lower part of a lava flow containing cumulate olivine (∼10%) and was probably derived from more primitive picritic magma by fractional crystallization processes.Sm-Nd dating yields an age of 3.09 ± 0.06 Ga which corresponds to the period of lower Eratosthenian lunar volcanic activity, and the near-chondritic εNd value of −0.4 ± 0.3 indicates that the meteorite could be derived from a slightly enriched mantle source similar to the Apollo 15 green glasses. Ar-Ar step release results are inconsistent with Sm-Nd ages suggesting that NEA 003-A was exposed to one or more impact events. The most extensive event took place at 1.8 Ga and the shock intensity was likely between 28 and 45 GPa. The absence of solar Ar suggests that NEA 003-A has not been directly exposed at the lunar surface but the cosmic ray exposure age of 209 ± 6 Ma suggests that NEA 003-A resided in the upper regolith for part of its history.  相似文献   

13.
The Antarctic lunar meteorite Meteorite Hills (MET) 01210 is a polymict regolith breccia, dominantly composed of mare basalt components. One relatively large (2.7 × 4.7 mm) basalt clast in MET 01210 (MET basalt) shows remarkable mineralogical similarities to the lunar-meteorite crystalline mare basalts Yamato (Y)-793169, Asuka (A)-881757, and Miller Range (MIL) 05035. All four basalts have similar rock texture, mineral assemblage, mineral composition, pyroxene crystallization trend, and pyroxene exsolution lamellae. The estimated TiO2 contents (∼2.0 wt%) of the MET basalt and MIL 05035 are close to the bulk-rock TiO2 contents of Y-793169 and A-881757. These similarities suggest that Y-793169, A-881757, MIL 05035, and the MET basalt came from the same basalt flow, which we designate the YAMM basalt. The source-basalt pairing of the YAMM is also supported by their similar REE abundances, crystallization ages (approx. 3.8-3.9 Ga), and isotopic compositions (low U/Pb, low Rb/Sr, and high Sm/Nd). The pyroxene exsolution lamellae, which are unusually coarse (up to a few microns) by mare standards, imply a relatively slow cooling in an unusually thick lava and/or subsequent annealing within a cryptomare. Reported noble gas and CRE data with close launch ages (∼1 Ma) and ejection depths (deeper than several meters) among the four meteorites further indicate their simultaneous ejection from the moon. Despite the marginally close terrestrial ages, pairing in the conventional Earth-entry sense seems unlikely because of the remote recovery sites among the YAMM meteorites.The high abundance (68%) of mare components in MET 01210 estimated from a two-component mixing model calculation could have resulted from either lateral mixing at a mare-highland boundary or vertical mixing in a cryptomare. The proportion of mare materials in MET 01210 is greater than in Apollo core samples at the mare-highland boundary. The burial depth (>several meters deep) inferred from the lack of surface irradiation of MET 01210 exceeds the typical mare regolith thickness (a few meters). Thus, the source of the YAMM meteorites is likely a terrain of locally high mare-highland mixing within a cryptomare. We searched for a possible source crater of the YAMM meteorites within the well-defined cryptomare, based on the multiple constraints obtained from this study and published data. An unnamed 1.4 km-diameter crater (53°W, 44.5°S) on the floor of the Schickard crater is the most suitable source for the YAMM meteorites.The 238U/204Pb (μ) value of the YAMM basalts is extremely low, relative to those of the Apollo mare basalts, but comparable to those of the Luna 24 very low-Ti basalts. The low-μ source indicates a derivation from a less differentiated mantle with a lack of KREEP components. Although the chemical sources of materials and heat source of melting might be independent, the heat source that generated the source magma of the YAMM and Luna 24 basalts may not be related to KREEP, unlike the case of the Apollo basalts. The distinct chemical and isotopic compositions of mantle sources between the Apollo basalts and the YAMM/Lunar 24 basalts imply differences in mantle composition and thermal evolution between the Procellarum KREEP Terrane (PKT) and non-PKT regions of the nearside.  相似文献   

14.
It is widely accepted that basaltic magmas are products of partial fusion of periodotite within planetary mantles. As such, they provide valuable insights into the composition, structure, and processes of planetary interiors. Those compositions which approach primary melt compositions provide the most direct information about planetary interiors and serve as a starting point to understand basaltic evolution. Within the collection of lunar samples returned by the Apollo and Luna missions are homogeneous, picritic glass beads of volcanic origin. These picritic glasses are our closest approximations to primary magmas. As such, these glass beads provide a unique perspective concerning the origin of mare basalts, the characteristics of the lunar interior, and processes in the early differentiation of the Moon. We have obtained trace element data for these picritic glasses using SIMS techniques. These data and literature isotopic and experimental data on the picritic glasses are placed within the framework of mare basaltic magmatism.The volcanic glasses are very diverse in their trace element characteristics, for example, they have a wide range of REE pattern shapes and concentrations. Like the crystalline mare basalts, all picritic glasses have a negative Eu anomaly. Unlike the crystalline mare basalts, there is little correlation between the size of the Eu anomaly and overall REE concentrations. Trace element differences among the various glasses suggests that a KREEP component was incorporated into their mantle source. This implies large scale mixing of the “Lunar Magma Ocean”-derived cumulate pile. Subtle differences among glasses suggest that local mixing of sources may also have been an important process. Preservation of subtle chemical differences in the picritic glasses and crystalline basalts may be interpreted as indicating that they were produced by small to moderate degrees of partial melting and that the lunar mantle did not experience extensive melting during episodes of mare volcanism.Several lines of evidence are consistent with the view that the picritic glasses were derived from mantle sources that were compositionally distinct from the sources for crystalline mare basalts. These are parallel, but no common, liquid lines of descent; chemical differences between picritic glasses and the more primitive crystalline mare basalts; experimental studies indicating that the picritic glasses are multiply saturated at depths greater than that of the mare basalts; differences in lead isotopic data; and the mode of eruption (i.e., fire fountaining for glass beads). These data also provide circumstantial evidence that suggests that the picritic glasses were derived from a source somewhat more volatile-rich than that of the mare basalts.Several petrogenetic models are suggested by the trace element characteristics of the picritic glasses:
  • 1.(1) Partial melting of heterogeneous lunar mantle at depths greater than 300 km to produce the parental magmas (picritic) for both the mare basalts and picritic glasses. Picritic magmas represented by glass beads were erupted to the surface with small degrees of fractional crystallization while mare basalts were produced by larger degrees of fractional crystallization (15–30%) of similar (but not identical) picritic magmas.
  • 2.(2) Picritic magmas represented by the glass beads were generated at depths greater than 400 km in a volatile-enriched (relative to the mare basalt source) heterogeneous mantle while mare basalts are fractional crystallization products of picritic magmas generated at depths of less than 400 km.
  • 3.(3) The picritic magmas represented by the glass beads represent polybaric melting that initiated at depths of at least 1000 km. A primitive mantle component or less processed cumulate mantle components may have been involved in the generation of the picritic glasses in any of these models.
  相似文献   

15.
The plutonic rocks of the magnesian suite (Mg-suite) represent the period of lunar basaltic magmatism and crustal growth (∼4.46 to 4.1 Ga) that immediately followed the initial differentiation of the Moon by magma ocean (LMO) formation and crystallization. The volume and distribution of the Mg-suite and its petrogenetic relationship to latter stages of lunar magmatism (mare basalts) remains obscure. These plutonic rocks exhibit a range of compositions and include ultramafics, troctolites, spinel troctolites, norites, and gabbronorites. A distinguishing characteristic of this suite is that they contain some of the most magnesium-rich phases (Fo95-90) that had crystallized from lunar magmas, yet they also are significantly enriched in an incompatible element component referred to as KREEP (a late-stage product of LMO crystallization containing abundant potassium (K), rare earth elements (REE), phosphorous (P), uranium, and thorium). Ion microprobe analyses of individual mineral phases (olivine, pyroxene, and plagioclase) from the Mg-suite have shown some very unexpected characteristics that have profound implications on the origin of these basaltic magmas. Although the Mg-suite lithologies are typified by silicates with relatively high Mg′, early liquidus phases such as olivine are fairly low in Ni, Co, and Cr relative to more iron-rich olivines in the younger mare basalts. The high Y and Ti/Y in early phases such as olivine and orthopyroxene indicate that the parental basaltic melts were high in incompatible elements and contained an “ilmenite fractionation” signature. However, the Y in olivine from many of the troctolites and ultramafic lithologies are only slightly greater than that of the olivine in the mare basalts whereas olivine in the norites, gabbronorites, and Apollo 14 troctolites are exceedingly high. The KREEP component may have been added to the Mg-suite parent magmas by assimilation or mixing into the mantle source. The volume of KREEP required to be added to the parental magmas of the Mg-suite tends to favor the latter mechanism for KREEP incorporation. The extremely high abundances of KREEP in the norites and gabbronorites are a product of substantial crystallization (40% to 70%) of KREEP-enriched Mg-suite parental magmas. Basaltic magmatism associated with KREEP extended for over 1.5 billion years and appears to have changed over time. The early stages of this style of lunar magmatism (Mg-suite) appear to represent melting of early LMO cumulates with low abundances of Ni, Co, Cr, and V. Later stages of KREEP-rich basaltic magmatism seemed to clearly involve melting of a variety of LMO cumulate assemblages with higher incompatible element enrichment. It appears that the heat derived from the KREEP component was instrumental in at least initiating melting of the lunar mantle over this period of time.  相似文献   

16.
Spinel-lherzolite xenoliths in alkali basalts from eastern China have porphyroclastic to equigranular textures displaying varying degrees of deformation and subsolidus re-equilibration. The proportions of minerals in these xenoliths vary from 52 to 72% homogeneous olivine (Fo88-91); 11 to 26% orthopyroxene (Wo0.9.1.6; En88-90; Fs8.7.10.7), with minor discontinuous variations of Al2O3, FeO, and CaO; 6 to 19% clinopyroxene (Wo43.47; En49.51; Fs3.7.6.7); and 1 to 5% spinel, with similar Mg# (79.6 to 82.6), but wider variations of Al2O3 and Cr2O3 (100Cr/(Cr + Al + Fe3+) = 8.1 to 23.6). Although previous trace-element and isotopic studies have shown that at least two distinctly different mantle sources were sampled by Cenozoic basalts, mineralogical heterogeneities seem to be minor within the spinel-peridotite-facies lithosphere beneath eastern China.

These xenoliths experienced limited interaction with the host basaltic magma during eruption. Symplectites of secondary, minute silicates, titanomagnetite, and sulfide have replaced orthopyroxene—and to a lesser extent olivine—at the contact with the basalt. The spinel in the margin of the xenolith is continuously zoned by substitutions of Fe3O4 (magnetite) and Fe2TiO4 (ulvospinel) for MgAl2O3 (spinel), and is rimmed by titanomagnetite with a sharp boundary. However, the compositions of the interior clinopyroxenes were commonly modified by metasomatic partial melting, which resulted in “spongy-textured” rinds on primary clinopyroxene. This secondary assemblage is composed mainly of a refractory, jadeite-poor clinopyroxene, which is largely in optica! continuity with the primary clinopyroxene in addition to interstitial feldspars, with minor titanomagnetite and Fe-Ni sulfides. This assemblage was produced by the introduction of K-rich fluids from the enclosing basaltic magma. The intensity of these secondary reactions appears to have been a function of the residence time of the xenolith in the host basalt. Therefore, all secondary alteration of both external and internal primary minerals in these xenoliths are the result of near-surface metasomatic processes, rather than of mantle phenomena.  相似文献   

17.
We report on the petrology and geochemistry of the Northwest Africa 2737 (NWA 2737) meteorite that was recovered from the Morrocan Sahara in 2000. It is the second member of the chassignite subclass of the SNC (Shergotitte-Nakhlite-Chassignite) group of meteorites that are thought to have originated on Mars. It consists of black olivine- and spinel-cumulate crystals (89.7 and 4.6 wt%, respectively), with intercumulus pyroxenes (augite 3.1 wt% and pigeonite-orthopyroxene 1.0 wt%), analbite glass (1.6 wt%) and apatite (0.2 wt%). Unlike Chassigny, plagioclase has not been observed in NWA 2737. Olivine crystals are rich in Mg, and highly equilibrated (Fo = 78.7 ± 0.5 mol%). The black color of olivine grains may be related to the strong shock experienced by the meteorite as revealed by the deformation features observed on the macroscopic to the atomic scale. Chromite is zoned from core to rim from Cr83.4Uv3.6Sp13.0 to Cr72.0Uv6.9Sp21.1. Pyroxene compositional trends are similar to those described for Chassigny except that they are richer in Mg. Compositions range from En78.5Wo2.7Fs18.8 to En76.6Wo3.2Fs20.2 for the orthopyroxene, from En73.5Wo8.0Fs18.5 to En64.0Wo22.1Fs13.9for pigeonite, and from En54.6Wo32.8Fs12.6 to En46.7Wo44.1Fs9.2 for augite. Bulk rock oxygen isotope compositions confirm that NWA 2737 is a new member of the martian meteorite clan (Δ17O = 0.305 ± 0.02‰, n = 2). REE abundances measured in NWA 2737 mineral phases are similar to those in Chassigny and suggest a genetic relationship between these two rocks. However, the parent melt of NWA 2737 was less evolved and had a lower Al abundance.  相似文献   

18.
The evolution of major mineral compositions and trace element abundances during fractional crystallization of a model lunar magma ocean have been calculated. A lunar bulk composition consistent with petrological constraints has been selected. Major mineral compositions have been calculated using published studies of olivine-melt, plagioclase-melt, and pyroxene-olivine equilibria. Trace element abundances have been calculated using experimentally-determined partition coefficients where possible. In the absence of experimental determinations, published partition coefficients obtained by analyzing phase separates from porphyritic volcanic rocks have been used. Trace elements studied are La, Sm, Eu, Lu, Rb, Sr( Eu2+), Ni, Co, and Cr.The first mineral to crystallize is olivine, which varies in composition from Fo98 at the liquidus to Fo95 at 50% solidification. Orthopyroxene crystallizes from 50 to 60% solidification with a restricted composition range of En95-En93. Plagioclase and Ca-rich clinopyroxene (XWo arbitrarily set equal to 0.5) co-crystallize during the final 40% solidification. Plagioclase changes in composition from An97 to approximately An93, while clinopyroxene evolves from En46 to approximately En40. The concomitant evolution of major element abundances in the melt is also discussed.The concentration of Ni in the melt decreases rapidly because solid-melt partition coefficients are significantly greater than unity at all stages of crystallization. The concentration of Cr in the melt increases slowly during olivine crystallization, then drops precipitously during the crystallization of orthopyroxene and clinopyroxene. The concentration of Co in the melt decreases slowly during olivine and orthopyroxene crystallization, after which it returns slowly to its initial concentration. Rubidium and Sr are not fractionated relative to one another until the onset of plagioclase crystallization. Ratios of Rb/Sr, normalized to their initial concentrations in the magma, do not rise above 10 until 95% of the magma has solidified. The ratios of Eu/Sm and La/Lu, normalized to their initial concentrations in the magma, remain essentially unfractionated until the onset of crystallization of clinopyroxene plus plagioclase, at which point the normalized La/Lu ratio increases to approximately 1.3 at 100% solidification and the normalized Eu/Sm ratio decreases to approximately 0.2 at 100% solidification.The model calculations are used to place approximate constraints on the bulk composition of the primitive Moon. Consideration of the effect on plagioclase composition of the activities of NaO0.5 and SiO2 in the melt suggests that the primitive Moon contained less than 0.4 wt % NaO0.5 and approximately 42–43 wt % SiO2. Concentrations of the REE in model lunar anorthosites are consistent with the returned samples. Concentrations of the REE in several model ‘highland basalts’ (considered to be representative of the average lunar terrae) are too low when compared with returned samples. Several possible explanations of this discrepancy are considered. The possible role of spinel in a twostage geochemical evolution of mare basalt liquids is discussed.  相似文献   

19.
Orthopyroxene-magnetite intergrowths (symplectites), partly or completely surrounding olivine, are described from the Wateranga layered mafic intrusion, Queensland, Australia. The texture occurs in unmetamorphosed plagioclase-rich norites, olivine gabbros and troctolites in which the primary minerals are olivine (Fo63–69) orthopyroxene (En66–72), clinopyroxene (Wo42En42Fs16), plagioclase (An49–65), hornblende, ilmenite, magnetite and sulphides. Symplectites range from incipient fine grained developments around corroded olivine grains to intricately formed pseudomorphs after olivine and slow a consistent orthopyroxene/magnetite ratio. Orthopyroxene in symplectites is commonly in optical continuity with surrounding magnetite-free orthopyroxene rims. Later intercumulus hornblended has replaced orthopyroxene. There is marked chemical similarity between primary and simplectite, orthopyroxenes and magnetites. Textures similar to those described here are considered elsewhere to have formed at a late magmatic stage or by solid state reactions involving subsolidus oxidation of olivine. In the Wateranga intrusion textural relations, the chemical similarity between primary and symplectite phases, and the consistent volume proportions of magnetite and orthopyroxene in the intergrowths suggest that they developed during late magmatic crystallization.  相似文献   

20.
In this study, ion microprobe analyses of individual minerals are used to investigate the petrogenesis of the Apollo 14 high-Al basalts. We use trace element concentrations from individual minerals in the Apollo 14 high-Al basalts to evaluate both endogenic and exogenic models. The data show that if the Apollo 14 high-Al basalts were produced by melting within the lunar mantle, these basalts cannot be related to one another by closed-system fractional crystallization of a single basaltic melt. Rather, the trace element data show that variable amounts of a KREEP component were added to the basalts by either assimilation, mixing into mantle sources, or impact melting. Single-stage assimilation-fractional crystallization models can only explain the data from this study if an excessively large mass of urKREEP is assimilated into the parent magma before olivine crystallization. Alternatively, the trace element data can be explained if the Apollo 14 high-Al basalts were produced by melting multiple Al-rich mantle sources that contain different amounts of urKREEP. Finally, for impact melting to be a relevant process, the data require that multiple large impact melts be formed from mixed KREEP-rich target lithologies. The resulting impact melts must then crystallize to produce basalts with igneous textures, high Al2O3 concentrations, uniform major element compositions, and a wide range of incompatible trace element concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号