首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
赣江上游河流水化学的影响因素及DIC 来源   总被引:20,自引:0,他引:20  
对赣江上游38 处水体采样点的水化学特征和溶解无机碳稳定同位素的分析, 发现其总溶解质浓度较低, 其中, 阳离子以Na+、Ca2+ 为主, 阴离子以Cl- 和HCO3 - 为主, Si 的浓度较高, 表征了典型硅酸盐地区河流的水化学组成特征。通过海盐校正分析得出, 研究区大气降水对河水溶解质的贡献率为11.5%, 扣除降水的贡献部分, 利用主成分分析的方法, 计算得出赣南流域受硅酸盐岩风化作用强烈, 同时由于受附近盐矿的影响, 蒸发盐岩的风化作用显著。另外, 根据δ13C 溶解无机碳DIC 的测量值约为-8.35‰~-13.74‰, 平均为-11.65‰, 利用质量平衡计算得出, 研究区DIC 的主要来源, 约68.5%来自于土壤CO2, 31.5%来自于碳酸盐矿物的溶解, 进而得出流域岩石化学风化过程消耗的土壤CO2 为2.11×105 mol/yr·km2, 来自碳酸盐本身的HCO3 -含量为9.6×104 mol/yr·km2。由于地理位置和流域环境以及人为因素的差异, 各支流DIC 来源的比例亦有所差异。  相似文献   

3.
Monthly samples of riverine water were collected and analyzed for the concentrations of major ions (Ca2+, Mg2+, K+, Na+, HCO3, SO42−, Cl, NO3), dissolved silicon, and total dissolved solids (TDS) at Wuzhou hydrological station located between the middle and lower reaches of the Xijiang River (XJR) from March 2005 to April 2006. More frequent sampling and analysis were carried out during the catastrophic flooding in June 2005. Stoichiometric analysis was applied for tracing sources of major ions and estimating CO2 consumption from the chemical weathering of rocks. The results demonstrate that the chemical weathering of carbonate and silicate rocks within the drainage basin is the main source of the dissolved chemical substances in the XJR. Some 81.20% of the riverine cations originated from the chemical weathering processes induced by carbonic acid, 11.32% by sulfuric acid, and the other 7.48% from the dissolution of gypsum and precipitates of sea salts within the drainage basin. The CO2 flux consumed by the rock chemical weathering within the XJR basin is 2.37 × 1011 mol y− 1, of which 0.64 × 1011 mol y− 1 results from silicate rock chemical weathering, and 1.73 × 1011 mol y− 1 results from carbonate rock chemical weathering. The CO2 consumption comprises 0.38 × 1011 mol during the 9-d catastrophic flooding. The CO2 consumption from rock chemical weathering in humid subtropical zones regulates atmospheric CO2 level and constitutes a significant part of the global carbon budget. The carbon sink potential of rock chemical weathering processes in the humid subtropical zones deserves extra attention.  相似文献   

4.
四川盆地雷口坡组大量钻井资料揭示中三叠统雷口坡组主要成盐期分别为雷三2期和雷四2期。岩性组合特征、沉积环境研究表明,在川中的平昌—南充—遂宁一带发育雷三2期浓缩盐膏质蒸发泻湖微相,在川中-川西地区的南部—盐亭—成都—邛崃地区发育雷四2期盐膏湖盆微相。两期盐岩差异主要表现是,雷三2期时,盆地处于频繁的海进、海退过程中,沉积环境变化较快,成盐环境相对开放,盐盆往往多次蒸发浓缩、补给、淡化,海水表现出接近或者达到盐岩沉积浓度,其间往往夹杂石膏和云质团块沉积。雷四2期时,四川盆地处于持续的海退蒸发期,蒸发量远远大于补给量,海水以蒸发浓缩为主,海水表现为超过石盐沉积浓度,沉积石盐中夹杂卤石,局部地区钾含量极高。  相似文献   

5.
察尔汗盐湖赋存有硫酸镁亚型和氯化物型两种水化学类型,沉积了中国最大的液体钾镁盐矿床。为解释察尔汗盐湖卤水矿床成因,拟在别勒滩、达布逊、察尔汗和霍布逊区段选择4个剖面,剖面深度在0~7 m之间,属于全新统上含盐组的上部盐层,每隔10cm进行采样,运用XRD半定量方法分析矿物组合特征。结果表明,整个湖区矿物组合由石盐、石膏、水氯镁石和碳酸盐组成,其平均含量分别为70%、4.7%、3.4%和1%;显示其矿物组合特征简单,盐层主要沉积石盐而贫石膏和碳酸盐矿物。同时,研究发现各区段石膏(硫酸盐矿物)平均含量自西向东明显下降,含镁矿物平均含量自西南向东北明显下降。结合察尔汗盐湖区卤水化学组成和水化学类型的分带,基本符合盐湖北部和东北部卤水富Ca~(2+),贫Mg~(2+)和SO_4~(2-)的沉积事实,进一步说明盐湖北部和东北部卤水和盐类沉积受具有氯化物型盐泉水的补给影响,为察尔汗盐湖混合掺杂成因提供了一定的矿物学证据。  相似文献   

6.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   

7.
Two scenarios of CO2-induced climatic change and projections of population and consumptive use of water to the year 2035 are utilized in a climate impact assessment of future water resources in the Great Lakes basin. When expressed as a streamflow/population index, results indicate a sharp decline of this index. Future index values are projected to be similar to those presently recorded for the Colorado River basin.  相似文献   

8.
封面图片:察尔汗盐湖   总被引:1,自引:1,他引:0  
杨波 《盐湖研究》2015,(1):29-37
采用扩展的过量吉布斯自由能模型,分别计算了1∶1、1∶2、2∶1、2∶2型四类盐的不同浓度下水溶液的冰点。对于1∶1型和1∶2型以及低浓度下的其它类型盐,计算结果与文献实验值吻合良好。同时比较了凝固点降低公式计算结果,证明过量吉布斯自由能模型在较宽浓度范围内计算冰点的结果更好。  相似文献   

9.
Multivariate statistical methods and inverse geochemical modeling were jointly used to deduce the genetic origin of chemical parameters of surface water in the Oued Chemora Basin. The analysis of variance indicates that variations of all parameters at the three stations are significant except for pH and T (p > 0.05). R-mode cluster analysis reveals two distinct groups at each station and led to the conclusion that the major ion chemistry in the three stations is derived from organic and artificial fertilizers due to agricultural activities in the area and water–rock interaction. Mineral saturation indices, calculated from major ions, indicate that the surface water is generally super-saturated with carbonate phases, and all the water samples are under-saturated with respect to gypsum, halite, and CO2(g). In a broad sense, the reactions responsible for the hydrochemical evolution in the Basin fall into three categories: (1) dissolution of evaporite minerals; (2) precipitation of carbonate minerals; and (3) ion exchange.  相似文献   

10.
黄土碳酸盐碳同位素广泛应用于第四纪气候环境变化的研究中,以往研究中多利用钙结核、次生碳酸盐或成壤碳酸盐,认为其反映了C4植物的丰度.黄土高原碳酸盐碳同位素表现为黄土层高,古土壤层中低,即黄土层中C4植物丰度高于古土壤层.然而,这样的结果和黄土有机碳同位素得到的结果矛盾,有机碳同位素的结果表明温度对C4植物的分布起到了决...  相似文献   

11.
WANG Jun  MENG Jijun 《地理学报》2007,17(3):327-338
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944–2005) and the Zhengyi Gorge (1954–2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m3/s·10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m3/s·10y; (3) prediction results show that: during 2006–2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m3/s·10y and 1.61 m3/s·10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.  相似文献   

12.
Specific Storage Volumes: A Useful Tool for CO2 Storage Capacity Assessment   总被引:1,自引:0,他引:1  
Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or ‘SSV’) can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative “footprint,” which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions.  相似文献   

13.
The objective of this research was to study the relationships between environmental factors and vegetation in order to find the most effective factors in the separation of the vegetation types in Poshtkou rangelands of Yazd province. Sampling of soil and vegetation were performed with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrat, and using the two-way indicator species analysis (TWINSPAN), and vegetation was classified into different groups. The topographic conditions were recorded in quadrat locations. Soil samples were taken in 0–30 and 30–60 cm depths in each quadrat. The measured soil variables included texture, lime, saturation moisture, gypsum, acidity (pH), electrical conductivity, sodium absorption ratio, and soluble ions (Na+, K+, Mg2+, Cl, CO32−, HCO3 and SO42−). Multivariate techniques including principal component analysis (PCA) and canonical correspondence analysis (CCA) were used to analyse the collected data. The results showed that the vegetation distribution pattern was mainly related to soil characteristics such as salinity, texture, soluble potassium, gypsum, and lime. Totally, considering the habitat conditions, ecological needs and tolerance range each plant species has a significant relation with soil properties.  相似文献   

14.
Saline lake deposits are arguably the best source of mid- to low-latitude terrestrial paleoclimate data. Alternating clastic sediments and evaporites of different chemical composition have long been recognized as sensitive records of changes in inflow and aridity related to a variety of climate parameters. Several sources of paleotemperature information from a halite-bearing saline lake deposit are described here – pseudomorphs of a cold-temperature evaporite mineral, homogenization temperatures of fluid inclusions in halite, and stable-isotope compositions of fluid inclusions in halite. Examples of these paleoclimate data come from analysis of the lower half of a 185-m core drilled in Pleistocene saline lake deposits at Death Valley, California. Daily and seasonal temperature variations in saline lake waters create conditions for the appearance and disappearance of temperature-dependent mineral phases. In the Death Valley core, hexagonal-shaped halite crystals, probable pseudomorphs of the cold-temperature hydrous mineral, hydrohalite (NaCl2H2O), provide evidence of brine temperatures below about 0 °C. Homogenization temperatures of fluid inclusions in primary halite offer an actual (not proxy) record of surface-brine temperatures. Samples with primary fluid-inclusion textures are carefully selected and handled, and data are collected from single-phase aqueous-brine inclusions chilled to nucleate vapor bubbles. Temperature variations are observable at scales of individual halite crystals (hours to days), single halite beds (weeks to months or years), and multiples of beds to entire facies (hundreds to tens of thousands of years). A 18O/D stable isotope record from the minute quantities of brines in fluid inclusions in halite is accessible using a method recently developed at the University of Calgary. The stable isotope record from the Death Valley core, a complex response to climate variables including temperature, humidity, storm patterns or seasons, and inflow sources, compliments and expands the interpretation emerging from the stratigraphy and homogenization temperatures.  相似文献   

15.
本文根据野外考察和室内研究,总结了海拉尔盆地盐湖的概况、盐类矿物组成、水化学成分和盐湖的形成自然环境;探讨碳酸盐型盐湖和形成条件和天然碱的成因机理.  相似文献   

16.
一定的泥岩地球化学特征对应于特定的源区和构造环境,利用主量元素图解可以进行盆地物源分析。通过对思茅盆地江城勐野井矿区含盐系勐野井组(K2me)及其下伏扒沙河组(K1p)泥、砂岩的主量元素地球化学特征分析,并结合岩石薄片观察结果,表明物源区母岩类型主要为长英质岩石;通过SiO2-K2O/Na2O及K2O/Na2O-SiO2/Al2O3判别图分析,认为源区的构造背景具有类似于被动大陆边缘的特征;成分变异指数ICV、化学蚀变指数CIA表明研究区砂、泥岩物源区经受了较强的化学风化作用。  相似文献   

17.
Coeval δ13C shifts recorded in buried soils at both piedmont slope and basin floor sites in the northern Chihuahuan Desert indicate a major shift from C4grasses to C3desert-scrub between 7 and 9 ka. The age assignments are based on stratigraphic correlations to charcoal dates and carbon-14 dates of carbonate. This shift is synchronous with a period of cooling in the North Atlantic that may have triggered a period of drought in the south-western United States. Coinciding with this vegetation change, geomorphic evidence in Rio Grande, piedmont, and basin floor eolian environments indicates a major period of erosion. Subsequent gradual enrichment of pedogenic carbonateδ13 C values in younger deposits suggests that C4grasses rebounded in the late Holocene (approximately 4 ka), which is consistent with other evidence of increased moisture regionally. A period of less severe aridity at approximately 2·2 ka is indicated by erosion and subsequent deposition along the alluvial fans and within the basin, and correlates with depleted pedogenic carbonate δ13C values suggesting a decrease in C4grasses. Isotope and packrat midden records should be used together to infer past environmental conditions at different elevations.  相似文献   

18.
The Pennsylvanian marine foreland basin of the Cantabrian Zone (NW Spain) is characterized by the unique development of kilometre‐size and hundred‐metre‐thick carbonate platforms adjacent to deltaic systems. During Moscovian time, progradational clastic wedges fed by the orogen comprised proximal alluvial conglomerates and coal‐bearing deltaic sequences to distal shelfal marine deposits associated with carbonate platforms (Escalada Fm.) and distal clay‐rich submarine slopes. A first phase of carbonate platform development (Escalada I, upper Kashirian‐lower Podolskian) reached a thickness of 400 m, nearly 50 km in width and developed a distal high‐relief margin facing a starved basin, nearly 1000‐m deep. Carbonate slope clinoforms dipped up to 30° and consisted of in situ microbial boundstone, pinching out downslope into calciturbidites, argillaceous spiculites and breccias. The second carbonate platform (Escalada II, upper Podolskian‐lower Myachkovian) developed beyond the previous platform margin, following the basinward progradation of siliciclastic deposits. Both carbonate platforms include: (1) a lower part composed of siliciclastic‐carbonate cyclothems characterized by coated‐grain and ooid grainstones; and (2) a carbonate‐dominated upper part, composed of tabular and mound‐shaped wackestone and algal‐microbial boundstone strata alternating at the decametre scale with skeletal and coated‐grain grainstone beds. Carbonate platforms initiated in distal sectors of the foreland marine shelf during transgressions, when terrigenous sediments were stored in the proximal part, and developed further during highstands of 3rd‐order sequences in a high‐subsidence context. During the falling stage and lowstand systems tracts, deltaic systems prograded across the shelf burying the carbonate platforms. Key factors involved in the development of these unique carbonate platforms in an active foreland basin are: (1) the large size of the marine shelf (approaching 200 km in width); (2) the subsidence distribution pattern across the marine shelf, decreasing from proximal shoreline to distal sectors; (3) Pennsylvanian glacio‐eustacy affecting carbonate lithofacies architecture; and (4) the environmental conditions optimal for fostering microbial and algal carbonate factories.  相似文献   

19.
Multivariate statistical methods and geochemical modeling were used to assess spatial variation of water quality of the Soummam basin, Algeria. The application of hierarchical cluster analysis (HCA) showed three main groups of samples. Group 1 samples are exclusively composed of surface water. Groups 2 and 3 samples consist of groundwater. Discriminant analysis assigned about 98.6% of the cases grouped by HCA. All groups are super-saturated with Ca-montmorillonite, dolomite, gibbsite, K-mica, kaolinite, and quartz, and all these groups are under-saturated with albite, anhydrite, anorthite, CO2(g), gypsum, halite, melanterite, and smithsonite. The results of analysis of variance indicate that the saturation indices of each of the mineral phases are significant except for chalcedony and quartz (p > 0.05). The results obtained by inverse geochemical modeling show the dissolution of albite, which justifies Na enrichment during the chemical evolution of groundwater. Calcite, dolomite, Ca-montmorillonite, kaolinite, illite, gibbsite, and K-mica are shown to have always precipitated.  相似文献   

20.
The northern Great Plains of Canada stretch from the Precambrian Shield near Winnipeg, Manitoba, westward for ∼1,700 km to the Rocky Mountains foothills. This vast region of flat to gently rolling terrain contains a very large number of salt lakes. Major ion chemical data on ∼500 of them are available. Although the average brine (salinity, 37 ppt) is a Na+−SO4 2− type of water, the lakes exhibit a wide range of salinities and ionic compositions. This diversity is confirmed by Q-mode cluster analysis; it identified thirteen major water chemistry types. Most ions display distinct trends, both spatially and with increasing salinity. All dissolved components increase with increasing salinity, but at different rates. The relative proportions of Ca2+ and HCO3 +CO3 2− ions show a strong decrease with increasing brine salinity, whereas SO4 2− ions increase with increasing salinity. The ionic proportions of Na+, Mg2+, K+ and Cl exhibit no significant relationship with salinity. R-mode factor analysis of the lake water chemistry, combined with selected environmental parameters, identifies groundwater composition, climate, and the elevation of the lake within the drainage system as most important in controlling brine chemistry and salinity on a regional basis. Variability in source of ions, reaction processes and products are undoubtedly key factors in helping to explain brine chemistry of an individual basin or variation from a local perspective, but these factors are generally poorly understood and not quantified on a regional basis. Palliser Triangle Global Change Project Contribution Number 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号