首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
The characteristics of ebb-tidal deltas are determined by the local hydrodynamics. The latter depend, among others, on the geometry of the adjacent back-barrier basin. Therefore, interventions in the back-barrier basin can affect the geometry of ebb-tidal deltas. In this study, the effect of the length of the back-barrier basin on the sand volume and spatial symmetry of ebb-tidal deltas is quantified with the use of a numerical model. It is found that the length of the back-barrier basin affects the tidal prism, the amplitude and phase of the primary tide and its overtides, and the residual currents that, together, determine the sand volume of the ebb-tidal delta. In particular, it is found that no unique relationship exists between tidal prism and sand volume of an ebb-tidal delta. The spatial symmetry of ebb-tidal deltas is also found to be affected by the length of the back-barrier basin. This is because the basin length determines the phase difference between alongshore and cross-shore tidal currents. The numerical model results give a possible explanation for the changes that are observed in the geometry of the ebb-tidal deltas that are located seaward of the Texel Inlet and Vlie Inlet after the closure of the Zuiderzee.  相似文献   

2.
3.
The MARS-3D model in conjunction with the particle tracking module Ichthyop is used to study circulation and tracer dynamics under a variety of forcing conditions in the eastern English Channel, and in the Boulogne-sur-Mer harbour (referred to hereafter as BLH). Results of hydrodynamic modelling are validated against the tidal gauge data, VHF radar surface velocities and ADCP measurements. Lagrangian tracking experiments are performed with passive particles to study tracer dispersal along the northern French coast, with special emphasis on the BLH. Simulations revealed an anticyclonic eddy generated in the harbour at rising tide. Tracers, released during flood tide at the Liane river mouth, move northward with powerful clockwise rotating current. After the high water, the current direction changes to westward, and tracers leave the harbour through the open boundary. During ebb tide, currents convergence along the western open boundary but no eddy is formed, surface currents inside the harbour are much weaker and the tracer excursion length is small. After the current reversal at low water, particles are advected shoreward resulting in a significant increase of the residence time of tracers released during ebb tide. The effect of wind on particle dispersion was found to be particularly strong. Under strong SW wind, the residence time of particles released during flood tide increases from 1.5 to 6 days. For release during ebb tide, SW wind weakens the southward tidally induced drift and thus the residence time decreases. Similar effects are observed when the freshwater inflow to the harbour is increased from 2 to 10 m3/s during the ebb tide flow. For flood tide conditions, the effect of freshwater inflow is less significant. We also demonstrate an example of innovative coastal management targeted at the reduction of the residence time of the pathogenic material accidentally released in the harbour.  相似文献   

4.
Jouanneau  Nicolas  Sentchev  Alexei  Dumas  Franck 《Ocean Dynamics》2013,63(11):1321-1340

The MARS-3D model in conjunction with the particle tracking module Ichthyop is used to study circulation and tracer dynamics under a variety of forcing conditions in the eastern English Channel, and in the Boulogne-sur-Mer harbour (referred to hereafter as BLH). Results of hydrodynamic modelling are validated against the tidal gauge data, VHF radar surface velocities and ADCP measurements. Lagrangian tracking experiments are performed with passive particles to study tracer dispersal along the northern French coast, with special emphasis on the BLH. Simulations revealed an anticyclonic eddy generated in the harbour at rising tide. Tracers, released during flood tide at the Liane river mouth, move northward with powerful clockwise rotating current. After the high water, the current direction changes to westward, and tracers leave the harbour through the open boundary. During ebb tide, currents convergence along the western open boundary but no eddy is formed, surface currents inside the harbour are much weaker and the tracer excursion length is small. After the current reversal at low water, particles are advected shoreward resulting in a significant increase of the residence time of tracers released during ebb tide. The effect of wind on particle dispersion was found to be particularly strong. Under strong SW wind, the residence time of particles released during flood tide increases from 1.5 to 6 days. For release during ebb tide, SW wind weakens the southward tidally induced drift and thus the residence time decreases. Similar effects are observed when the freshwater inflow to the harbour is increased from 2 to 10 m3/s during the ebb tide flow. For flood tide conditions, the effect of freshwater inflow is less significant. We also demonstrate an example of innovative coastal management targeted at the reduction of the residence time of the pathogenic material accidentally released in the harbour.

  相似文献   

5.
To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.  相似文献   

6.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

7.
Based on pressure tide-gauge observations, sea-level records are derived for ten sites along the coast of West Greenland. The ocean tidal signal is extracted by a harmonic tidal analysis. The accuracy of the determined tidal constants is discussed in detail. The tides account for 85% of the observed sea-level standard deviation. The tide gauge records reveal significant shallow-water tidal effects, in particular compound and overtide amplitudes reaching 5 cm. The propagation of the tidal waves into the fjords depends strongly on local conditions and is in some cases accompanied by an amplification of the tidal amplitudes. The observed tidal signals are compared to the predictions of the global ocean tide model FES2004. At the outer coast, a good agreement is found. Inside the fjords, however, the model performs worse and tide gauge observations may still be indispensable when accurate tidal signals are required.  相似文献   

8.
9.
Suspended particulate matter (SPM) fluxes and dynamics are investigated in the East Frisian Wadden Sea using a coupled modeling system based on a hydrodynamical model [the General Estuarine Transport Model (GETM)], a third-generation wave model [Simulating Waves Nearshore (SWAN)], and a SPM module attached to GETM. Sedimentological observations document that, over longer time periods, finer sediment fractions disappear from the Wadden Sea Region. In order to understand this phenomenon, a series of numerical scenarios were formulated to discriminate possible influences such as tidal currents, wind-enhanced currents, and wind-generated surface waves. Starting with a simple tidal forcing, the considered scenarios are designed to increase the realism step by step to include moderate and strong winds and waves and, finally, to encompass the full effects of one of the strongest storm surges affecting the region in the last hundred years (Storm Britta in November 2006). The results presented here indicate that moderate weather conditions with wind speeds up to 7.5 m/s and small waves lead to a net import of SPM into the East Frisian Wadden Sea. Waves play only a negligible role during these conditions. However, for stronger wind conditions with speeds above 13 m/s, wind-generated surface waves have a significant impact on SPM dynamics. Under storm conditions, the numerical results demonstrate that sediments are eroded in front of the barrier islands by enhanced wave action and are transported into the back-barrier basins by the currents. Furthermore, sediment erosion due to waves is significantly enhanced on the tidal flats. Finally, fine sediments are flushed out of the tidal basins due to the combined effect of strong erosion by wind-generated waves and a longer residence time in the water column because of their smaller settling velocities compared to coarser sediments.
Karsten A. LettmannEmail:
  相似文献   

10.
Ocean tides and resonance   总被引:1,自引:1,他引:0  
Tidal currents and surface amplitudes are calculated globally for the dominating diurnal and semidiurnal constituents using an established tidal model under a range of altered bathymetry. The purpose is to evaluate if the well-known amplification of the global tides during the Last Glacial Maximum (LGM) is related to changed propagation properties for the tidal wave or to changed damping due to removal of shelf seas. The response of the tides and tidal dissipation to future sea-level rise is also discussed. The tides in the present and LGM oceans were simulated first, followed by runs where the present day bathymetry was used but the shelf seas removed by the introduction of vertical walls or where sea level is allowed to rise. Previously reported results regarding tidal amplitudes and dissipation rates are reproduced in the control runs. The runs without shelf seas show significantly enhanced tidal amplitudes in the North Atlantic, whereas sea-level rise of 5 m above present levels show a significant shift in the amphidromic points on a local and regional scale but had a limited effect on the open ocean tides. Simulations with very large sea-level rise show a significantly decreased global tidal dissipation, whereas experiments without friction in present-day shallow water display results similar to those with no shelf seas. The results all point towards changing damping properties due to the removal of shelf seas as being the mechanism behind the LGM amplification, and they imply the importance of implementing future sea-level changes properly in tidal simulations.  相似文献   

11.
A fine grid tidal modeling experiment is carried out in order to investigate the tidal regimes for major five tidal constituents, the nonlinear tidal phenomena in terms of M4 and MS4 generation, and the independent tide by the tide generating force in the Yellow and East China Seas (YECS). In this study a two-dimensional numerical model based upon a subgrid-scale (SGS) stress modeling technique is used with the tide generating force included. The model was validated with recently observed tide and current data. The calculated tidal charts for tidal elevation show a generally good agreement with existing ones, with more accurate feature of the M2 cotidal chart in comparison with both the observed data and the existing tidal charts. A careful comparison of the computed diurnal amplitude with observations suggests that the diurnal constituents seem to be overdamped especially in the Kyunggi Bay region, for the case when quadratic bottom friction law is used.Propagation features of the M4(MS4) tides are discussed in the YECS, based upon the analyses of the observed and calculated results. The amphidromic system of the M4 is quite complicated and one noticeable characteristic is that the propagation direction of the M4 tidal wave along the west coast of Korean peninsula is opposite to that of the M2 tidal wave. This result coincides with observations. The propagation feature of the MS4 is almost similar to that of the M4, but with lesser amplitude. The responses of the M4 tidal features to momentum diffusion term and depth-dependent form of the friction coefficient are also discussed.It is also shown that when the independent tide (Defant, 1960) arising from tide generating force (TGF) coexists with tidal waves (co-oscillating tide) arising from external boundary forcing, the TGF tidal waves are dissipated and their amphidromes tend to move westward. This may be interpreted as a process whereby the incident and reflected TGF tidal waves are damped by co-oscillating tide arising from external force at open boundaries. The TGF amplitude is found to be up to 10 cm and 4 cm in the Kyunggi Bay for the M2 and S2 constituents while those for all diurnal constituents are less than 1 cm over the entire model domain.  相似文献   

12.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

13.
This paper discusses the variability of surface currents around Sekisei Lagoon using a nested grid ocean circulation model. We developed a triple-nested grid system that consists of a coarse-resolution (1/60° or ∼1.85 km) model off Taiwan, an intermediate-resolution (1/300° or ∼370 m) model around the Yaeyama Islands, and a fine-resolution (1/900° or ∼123 m) model of Sekisei Lagoon. The nested grid system was forced by wind and heat flux calculated from six-hourly atmospheric reanalysis data and integrated over the period from May to July 2003. The coarse-resolution model was driven by lateral boundary conditions calculated from daily ocean reanalysis data to include realistic variation of the Kuroshio and mesoscale eddies with spatial scales of ∼500–700 km in the open ocean. The tidal forcing was included in the intermediate-resolution model by interpolating sea level data obtained from a data-assimilative tidal model. The results were then used to drive the fine-resolution model to simulate the surface water circulation around Sekisei lagoon. Model results show that (1) currents inside the lagoon are mainly driven by tide and wind; (2) there exists a strong southwestward current along the bottom slope in the southeast portion of the lagoon; the current is mainly driven by remote mesoscale eddies and at times intensified by the local wind; (3) the flow relaxation scheme is effective in reducing biases along the open boundaries. The simulated currents were used to examine the retention and dispersion of passive particles in the surface layer. Results show that the surface dispersion in the strong open ocean current region is significantly higher than that inside the lagoon.  相似文献   

14.
Sea level changes coherently along the two coasts of Japan on the seasonal timescale. Archiving, validation, and interpretation of satellite oceanographic altimetry data and ocean general circulation model for the Earth Simulator results indicate that the variation propagates clockwise from Japan’s east coast through the Tsushima Strait into the Japan/East Sea (JES) and then northward along the west coast. In this study, we hypothesize and test numerically that the sea-level variability along the west coast of Japan is remotely forced by the Kuroshio Extension (KE) off the east coast. Topographic Rossby waves and boundary Kelvin waves facilitate the connection. Our 3D Princeton Ocean Model when forced by observed wind stress reproduces well the seasonal changes in the vicinity of JES. Two additional experiments were conducted to examine the relative roles of remote forcing and local forcing. The sea-level variability inside the JES was dramatically reduced when the Tsushima Strait is blocked in one experiment. The removal of the local forcing, in another experiment, has little effect on the JES variability. Both experiments support our hypothesis that the open-ocean forcing, possibly through the KE variability, is the leading forcing mechanism for sea-level change along the west coast of Japan.  相似文献   

15.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   

16.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

17.
The paper addresses the individual and collective contribution of different forcing factors (tides, wind waves, and sea-level rise) to the dynamics of sediment in coastal areas. The results are obtained from simulations with the General Estuarine Transport Model coupled with a sediment transport model. The wave-induced bed shear stress is formulated using a simple model based on the concept that the turbulent kinetic energy (TKE) associated with wind waves is a function of orbital velocity, the latter depending on the wave height and water depth. A theory is presented explaining the controls of sediment dynamics by the TKE produced by tides and wind waves. Several scenarios were developed aiming at revealing possible trends resulting from realistic (observed or expected) changes in sea level and wave magnitude. The simulations demonstrate that these changes not only influence the concentration of sediment, which is very sensitive to the magnitude of the external forcing, but also the temporal variability patterns. The joint effect of tides and wave-induced bed shear stress revealed by the comparison between theoretical results and simulations is well pronounced. The intercomparison between different scenarios demonstrates that the spatial patterns of erosion and deposition are very sensitive to the magnitude of wind waves and sea-level rise. Under a changing climate, forcing the horizontal distribution of sediments adjusts mainly through a change in the balance of export and import of sediment from the intertidal basins. The strongest signal associated with this adjustment is simulated North of the barrier islands where the evolution of sedimentation gives an integrated picture of the processes in tidal basins.  相似文献   

18.
The finite element ocean tide model of Le Provost and Vincent (1986) has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski’s solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.  相似文献   

19.
Traditionally, ocean tides have been modeled in frequency domain with a forcing from selected tidal constituents. It is a natural approach; however, it implicitly neglects non-linearities of ocean dynamics. An alternative approach is time-domain modeling with a forcing given by the full lunisolar potential, i.e., all tidal waves are a priori included. This approach has been applied in several ocean tide models; however, some challenging tasks still remain, for example, assimilation of satellite altimetry data. In this paper, we introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing techniques used in assimilative ocean tide models. We present results from DEBOT, a global barotropic ocean tide model, which has two modes: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. The accuracy of DEBOT in both modes is assessed through a series of tests against tide gauge data which demonstrate that DEBOT is comparable to state-of-the-art global ocean tide models for major tidal constituents. Furthermore, as signals of all tidal frequencies are included in DEBOT, we also discuss modeling of minor tidal constituents and non-linear compound tides. Our modeling approach can be useful for those applications where the frequency domain approach is not suitable.  相似文献   

20.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号