首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
冰缘遗迹(特别是冷生楔形构造及融冻褶皱)是重建古气候及第四纪晚期多年冻土环境的重要证据.内蒙古鄂尔多斯高原是我国北方地区冰缘现象最为发育的地区之一.为准确了解鄂尔多斯高原冰缘遗迹类型及其分布特征、区域冻土演化历史等,中国科学院西北生态环境资源研究院和荷兰自由大学共同组成科研小组,于2018年5—6月组织了"鄂尔多斯高原...  相似文献   

2.
3.
A.L. Washburn 《Earth》1980,15(4):327-402
Permafrost features indicate certain upper limits for annual air and ground temperatures, with the air temperatures being usually the lower because of insulating snow and vegetation. The following features generally imply mean annual air temperatures no higher than those indicated and commonly lower: permafrost itself, large sorted forms of patterned ground, palsas, and rock glaciers, 0°C; ice-wedge polygons and well-developed soil-wedge polygons, ?5°C; open-system pingos, ?2°C; closed system pingos, ?6°C; the implication of cryoplanation terraces remains to be established, with estimates ranging from near 0° to ?12°C.Use of fossil permafrost features as temperature indicators is complicated by problems of correct identification and dating, soil type, and local and regional environmental variables such as precipitation and vegetation. Nevertheless the fact that certain maximum paleotemperatures can be reasonably established in places warrants expanded research in former periglacial areas to evaluate temperature increases to the present. The majority of determinations in Europe, where most of the work has been done to date, indicate minimum air temperature increases of 13°–18° since the maximum of the last glaciation.  相似文献   

4.
Polygonal patterned ground and associated sediment-filled wedges occur in thin-bedded shale in central New Jersey. During a dry growing season, numerous areas of polygonal ground were visible owing to differential growth of vegetation over the sediment-filled fractures. Construction sites where material was removed from the surface prior to excavation also revealed areas of polygonal ground. Measurements of the patterns show networks of polygons with diameters ranging from about 3 m to over 30 m, with an average of approximately 20 m. The wedges examined in vertical exposures range in depth from 25 to 260 cm (average, 125 cm) and in width from 10 to 240 cm (average, 50 cm). The infilling material of the wedges is mostly a sandy loam, although this material is not homogeneous throughout the wedges. The presence of ventifacts and frosted sand grains within the wedges indicates eolian activity during the formation of these features. The polygonal ground and wedge structures exhibit several characteristics similar to those of ice-wedge casts, and available evidence suggests they may have originated as ice-wedge polygons during the last glacial maximum.  相似文献   

5.
Troy L Péwé 《Geoforum》1973,4(3):15-26
Ice wedge casts are the most accurate and widespread indicators of past permafrost. Many ice wedge casts exist in Alaska, some in areas of existing ice wedges. In addition to indicating paleotemperature conditions and a wider distribution of permafrost in Wisconsinan time than now, casts in Alaska also indicate permafrost in Iliinoian and pre-lllinoian time. Hundreds of ice wedge casts are now known in temperate North America and are described from about 22 widespread localities coast to coast in Canada and United States. Permafrost existed in late Wisconsinan time, 20,000 to 10,000 years ago, along the glacial border in temperate United States. Later permafrost formed north of the glacial border as the continental ice sheet withdrew exposing drift to the rigorous periglacial climate. Ice wedge casts indicate that the ? 7 °C mean annual air isotherm was about 2000 km farther south in late Wisconsinan time than now.  相似文献   

6.
Ice wedges are wedge-shaped masses of ice, oriented vertically with their apices downward, a few millimeters to many meters wide at the top, and generally less than 10 m vertically. Ice wedges grow in and are confined to humid permafrost regions. Snow, hoar frost, or freezing water partly fill winter contraction cracks outlining polygons, commonly 5–20 m in diameter, on the surface of the ground. Moisture comes from the atmosphere. Increments of ice, generally 0.1–2.0 mm, are added annually to wedges which squeeze enclosing permafrost aside and to the surface to produce striking surface patterns. Soil wedges are not confined to permafrost. One type, sand wedges, now grows in arid permafrost regions. Sand wedges are similar in dimensions, patterns, and growth rates to ice wedges. Drifting sand enters winter contraction cracks instead of ice. Fossil ice and sand wedges are the most diagnostic and widespread indicators of former permafrost, but identification is difficult. Any single wedge is untrustworthy. Evidence of fossil ice wedges includes: wedge forms with collapse structures from replacement of ice; polygonal patterns with dimensions comparable to active forms having similar coefficients of thermal expansion; fabrics in the host showing pressure effects; secondary deposits and fabric indicative of a permafrost table; and other evidence of former permafrost. Sand wedges lack open-wedge, collapse structures, but have complex, nearly vertical, crisscrossing narrow dikelets and fabric. Similar soil wedges are produced by wetting and drying, freezing and thawing, solution, faulting, and other mechanisms. Many forms are multigenetic. Many socalled ice-wedge casts are misidentified, and hence, permafrost along the late-Wisconsinan border in the United States was less extensive than has been proposed.  相似文献   

7.
New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field’s history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ∼15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ∼13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ∼8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ∼5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ∼2000 and 1500 yr, followed by a brief (∼500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ∼700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (∼350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene.  相似文献   

8.
Although partly active aeolian sand sheets and dunes cover large areas in the zones of (dis)continuous permafrost, little precise information is available about the influence of cold-climate conditions on modern aeolian processes. This means that palaeoenvironmental reconstructions in the stabilised, mainly Late Pleistocene dune fields and cover sand regions in the ‘sand belts’ of the European Lowlands and the Northern Great Plains of the USA and Canada, are necessarily still based on ancient evidence. Cold-climate wind deposits are typically derived from areas of abundant sediment supply like unvegetated flood plains, glacial outwash plains, till plains and lake shores. The common parabolic and transverse dune forms resemble those observed in temperate regions. Although a variety of periglacial features has been identified in Late Pleistocene dune and cover sands none of them indicate that permafrost is crucial to aeolian activity. Specific structures in aeolian strata permit tentative interpretation of the moisture content of depositional sand surfaces, the nature of annual sedimentation cycles and the processes by which strata were deposited and/or contorted. But surprisingly little is known about the role of vegetation in the process of sand accumulation. Dunes are most informative with respect to reconstructions of past wind regimes, which offer important data for verification of palaeoclimatic simulations.  相似文献   

9.
Recent investigations into relict periglacial phenomena in northern and western China and on the Qinghai–Tibet Plateau provide information for delineating the extent of permafrost in China during the Late Pleistocene. Polygonal and wedge‐shaped structures indicate that, during the local Last Glacial Maximum (LLGM, between ~35 and 10.5 ka BP), the southern limit of latitudinal permafrost in northern China advanced southward at least to ~38–40°N in the east and to ~37–39°N in the west. This represents an advance of about 5–10° of latitude beyond present‐day permafrost limits. The lower limits of elevationally controlled permafrost on the Qinghai–Tibet Plateau and its peripheries were about 1000 m lower: this permafrost was largely continuous during the LLGM. This suggests a cooling of between 4 and 10°C, or more. This paper discusses the extent of permafrost during the LLGM and presents maps that have been constructed on the basis of extensive and integrative analysis of all reliable and pertinent data. The results indicate that the extent of LLGM permafrost in China was between ~3.8 and 4.3×106 km2. This is 80 to 100% more than that of ~2.15×106 km2 in the 1970s, and 120 to ~150% more than that of ~1.75×106 km2 today.  相似文献   

10.
研究了山西大同、内蒙古东胜和乌审旗地区发现的大量冰楔假型、砂楔、寒冻裂隙和南部白城子附近的冰卷泥.根据这些冰缘现象,并参考前人工作成果,划定了晚更新世晚期末次冰期时多年冻土的南界,并根据所获得的年代资料划分了4次冰缘期:33ka BP,30~26ka BP,20~16ka BP和8ka BP左右,当时的温度比今天分别降低8.4℃,12~13℃,10℃和7~10℃.  相似文献   

11.
Frost-cracking and ice-wedge growth are fundamental processes within the permafrost environment. Extensive areas of contemporary permafrost terrain are characterised by frost-fissure polygons, formed by repeated thermal contraction-cracking of the ground. The incremental growth of ice veins and wedges along the axes of contraction-cracks contributes significantly to the volume of ground ice in near-surface permafrost. In areas beyond the present limit of permafrost, the recognition of ice-wedge pseudomorphs provides one of the few unambiguous indications of the former existence of permafrost conditions. An understanding of the processes of ice-wedge growth and thaw transformation is essential if contemporary ice wedges are to be used as analogues for Pleistocene frost-fissure structures, in palaeoenvironmental reconstructions.  相似文献   

12.
Introduction     
Environmental reconstructions utilising the evidence of relic or fossil periglacial features are necessarily based on the nature and present distribution of comparable active features. The most critical features are those indicative of permafrost, because of the negative mean annual temperatures required for permafrost, whereas many other cold climate features are much less informative as to temperature implications. (Washburn, Geocryology, 1980, 279).  相似文献   

13.
北京西山灵岳寺附近的第四纪沉积物不是真正的古冰川沉积物。该处山腰凹地中一套以粗大砾石为主的混杂堆积是较典型的复式稀性泥石流堆积体,其时代为晚更新世之前,而不是晚更新世末期产物。所谓晚更新世末期的冰川堆积体和冰蚀地貌,实际上是不存在的。晚更新世时期,北京西山地区属冰缘环境,而非冰川环境。  相似文献   

14.
Sorted circles, polygons, and stripes are reported from Alaska, Greenland, Baffin Island, Antarctica, and New Hampshire. From these studies and key references, all cases are found to have: (1) a mixed parent material, commonly till, composed of a wide range of clast sizes unsorted below frost table, (2) gutter depressions containing the largest stones and carrying summer drainage, and (3) tabular stones on edge in the gutters showing expansion-squeezing from the sides. The size of the unit cells, gutter to gutter, is a function of mean maximum clast size: smallest chips making forms 10 cm diameter across and largest forms 20 m across. The slope determines the shape: polygons, and nets form on slopes up to 2 or 4° depending upon amount of water and fines. Ellipses form on 3 to 6° slopes, and stripes form on 4 to 11° slopes. Clearly shape is an effect of solifluction. Lastly, time involves seasons of sporadic sorting until there is a stable end form with lichen-covered stone gutters and tundra-covered soil centers. The up-and-out mechanism, described by Corté, is the best known for the primary sorting. Larger sorted forms (2–20 m in diameter) are reported almost exclusively where nearly continuous permafrost exists. They form where the mean annual temperature is below ? 4°C. Former permafrost is indicated where lichen and turf are dense and not overturned and where measured motion is nil. Small forms (under 1 m in diameter) are generated in a year or two where there is only deep annual freezing (0.1–2 m), but no permafrost.  相似文献   

15.
成都平原第四纪化石冰楔的发现及古气候意义   总被引:5,自引:0,他引:5  
最近,在成都平原西缘,大邑城西氮肥厂附近,斜江河西岸,上新统-下更新统大邑砾岩剖面的北端新开挖的露头上,发现了4条化石冰楔。这里的地理坐标是30°35'N103°31'E,海拔530m.这些冰楔发育于大邑砾岩露头的顶部。其中最大的一条,顶部宽3m,向下延伸2.5m.这些冰楔垂直向下延伸,与大邑砾岩层面斜交。所以,它们是在大邑砾岩沉积之后并经过构造变动后形成的,是大邑砾岩的后生冰楔。化石冰楔的充填物的特征与大邑砾岩有明显差别:前者为棕黄色,后者为灰白-黄色;前者砾径分选较好,砾径较细,一般长5cm~15cm,而后者砾径分选较差,粗大者20cm~30cm;前者的砾石含量高,约95%,后者的砾石含量低,约85%;前者砾石ab面产状无优势方向,而后者的ab面产状显示优势方向,倾向170°~210°,倾角30°~40°.由于两者有上述差别,所以,化石冰楔在露头上可以被识别出来。采用ESR法测定冰楔充填物的时代为0.171Ma.由此看来,这些冰楔的形成时代可能相当于V28-238深海岩心氧同位素曲线第6气候期(0.195Ma~0.128Ma),也可与中国黄土L2~5(0.195Ma~0.180Ma)和L2~4(0.180Ma~0.167Ma)所记录的气候波动和青藏高原倒数第二次冰期对比。
一般认为,冰楔是多年冻土的指示器,所以这些化石冰楔反映了成都平原在第四纪曾一度发育多年冻土。据研究,冰楔只能形成于年均温<-6℃的地方,高海拔多年冻土下界大致与-2℃~-4℃年均等温线相符。现今,大邑附近年均温约16℃.那么,化石冰楔形成时期,成都平原年均温至少比现今下降了18℃.   相似文献   

16.
青海湖北岸刚察县城东与泉吉乡西发现原生砂楔群, 楔内充填物均为中细粒砂, 楔体底部中细粒砂ESR测年数据表明, 刚察县城东3个原生砂楔发育时代分别为(774±70) ka、(773±70) ka和(229±20) ka, 泉吉乡西1个原生砂楔形成时代为(197±18) ka, 反映该区至少发育两期原生砂楔, 其形成时代分别对应昆仑冰期和倒数第二次冰期. 基于原生砂楔的特殊形成环境, 估算青海湖盆地在昆仑冰期早期的年均温不高于-7.5~-10 ℃, 比现今至少低9.2~11.7 ℃, 中更新世早期青海湖盆地发育多年冻土, 青藏高原东北部可能已经进入冰冻圈; 倒数第二次冰期的年均温不高于-9.5~-10 ℃, 比现今低11 ℃以上.  相似文献   

17.
Cryoplanation terraces are bedrock steps or terraces on ridge crests and hilltops. The tread or “flat” area is 10 to several hundred meters wide and long and slopes from 1 to 5° parallel to the ridge crests. Terrace scarps may be from 1 to 75 m high. Terraces are cut into all bedrock types and are best developed on closely jointed, fine-grained bedrock. The scarps and treads are covered with frost-rived rubble 1 to 2 m thick. The rubble on treads is perennially frozen at a depth of 1 to 2 m or less on sharp but inactive terraces in Alaska.Cryoplanation terraces exist in many parts of the world in present or past periglacial environments. They occur chiefly in nonglaciated regions and near the general altitude of snowline. Cryoplanation terraces form by scarp retreat as the result of nivation. Surficial debris is removed across the terrace tread by mass-wasting. Terrace morphology depends mainly upon climate, bedrock type, and terrace orientation.No climatic data are available from active terraces. Indirect evidence indicates that climatic requirements include low snowfall and cold summer temperatures. Shallow permafrost is necessary to provide moisture and a base for mass movement as well as a base for nivation.Hundreds of sharp but inactive terraces occur in some areas in Alaska where the summer temperature is colder than 10°C. When these terraces were active, temperatures were colder. Recent work in Alaska indicates that terraces were active in some areas when the mean July temperature was about 4°C. The mean annual air temperature probably was in the neighborhood of ′12°C or colder.  相似文献   

18.
Numerous periglacial features (polygons, nets, soil stripes, ice‐wedge pseudomorphs and sand‐wedge casts, involutions) have been recorded in France by examining bibliographical sources and aerial photographs. These data show that a large part of France was affected by permafrost during the Pleistocene and only the southern Aquitaine Basin and Languedoc seem to have been beyond its maximum extent. The first OSL ages obtained from the aeolian infill of wedge structures indicate that at least two phases of thermal contraction cracking occurred in southwestern France between ~25 and 36 ka. Chronostratigraphical data from loess in northern France indicate that these episodes correspond to the formation of ice‐wedge networks associated with tundra gleys. In the latter region, two additional permafrost episodes probably occurred during the Last Glacial, the older one corresponding to the end of Marine Isotope Stage (MIS) 4 around 60 ka and the more recent one to MIS 2 around 19–16 ka. Although stratigraphical data indicate that these episodes were relatively short (about one millennium), relict permafrost may have existed for longer periods in northern France.  相似文献   

19.
Wedge structures and involutions suggest that Late Pleistocene frozen ground, either permafrost or deep seasonal frost, extended at least as far south as latitude 47°N in central Europe (the Pannonian Basin). Optically stimulated luminescence dating of the sand infill from a number of wedges indicates that emplacement of the sand infill occurred during the Late Pleistocene (22.2–15.7 ka). This suggests that during this time the mean annual air temperature was depressed by at least ~15°C relative to the present. Either continuous or discontinuous permafrost was probably present in the north and NW of the Pannonian Basin. The subsequent thaw of frozen ground is indicated by the widespread occurrence of deformed sediments. The presence of soil (ground) wedges suggests conditions of deep seasonal frost probably existed during the period when climate ameliorated following the Last Permafrost Maximum (LPM).  相似文献   

20.
The Ledo‐Paniselian Aquifer in Belgium offers unique opportunities to study periglacial groundwater recharge during the Last Glacial Maximum (LGM), as it was located close to the southern boundary of the ice sheets at that time. Groundwater residence times determined by 14C and 4He reveal a sequence of Holocene and Pleistocene groundwaters and a gap between about 14 and 21 ka, indicating permafrost conditions which inhibited groundwater recharge. In this paper, a dataset of noble gas measurements is used to study the climatic evolution of the region. The derived recharge temperatures indicate that soil temperatures in the periods just before and after the recharge gap were only slightly above freezing, supporting the hypothesis that permafrost caused the recharge gap. The inferred glacial cooling of 9.5°C is the largest found so far by the noble gas method. Yet, compared to other palaeoclimate reconstructions for the region, recharge temperatures deduced from noble gases for the cold periods tend to be rather high. Most likely, this is due to soil temperatures being several degrees higher than air temperatures during periods with extended snow cover. Thus the noble‐gas‐derived glacial cooling of 9.5°C is only a lower limit of the maximum cooling during the LGM. Some samples younger than the recharge gap are affected by degassing, possibly related to gas production during recharge in part of the recharge area, especially during times of melting permafrost. The findings of this study, such as the occurrence of a recharge gap and degassing related to permafrost and its melting, are significant for groundwater dynamics and geochemistry in periglacial areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号