首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary. Teleseismic P and S arrival times to North American stations are obtained from the ISC bulletins for the 10-yr period 1964–73, and relative travel-time delays are calculated with respect to standard tables. Station anomalies as well as variations of the delays with azimuth and epicentral distance from station are analysed, and the location of the velocity anomalies responsible for them is discussed. Inversion of the P delays to infer upper mantle velocity structure down to a depth of 700 km is obtained using three-dimensional blocks, as proposed by Aki, Christofferson & Husebye. Three layers can be resolved in this depth range. It is found that the heterogeneities responsible for the travel-time delays are primarily located in the first 250 km of the upper mantle, and that they correlate with surface features. Significant heterogeneities subsist to depths of at least 700 km and their broad scale pattern also correlates with the surface features: in the third layer (500 to 700 km depth) there is an increase of velocity from the West to the East of the United States, while the second layer (250 to 450 km depth) exhibits a reversed pattern. A tentative interpretation of these deeper anomalies is made, as being due mainly to topography of the major upper mantle discontinuities, near 400 and 650 km depth.  相似文献   

2.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

3.
This work is a study of the upper-mantle seismic structure beneath the central part of the Eurasian continent, including the northern Mongolia, Altai and Sayan orogenic areas and the Baikal rift zone. Seismic velocity models are reconstructed using the inverse teleseismic scheme. This scheme uses information from earthquakes located within the study area recorded by the Worldwide Network. The seismic anomaly structure is obtained for different volumes in the study area that partially overlap one another. Special attention has been paid to the reliability of the results: several noise and resolution comparisons are made.
The main results are as follows. (1) A cell structure of anomalies is observed beneath the Altai–Sayan region: positive, cold anomalies correspond to regions of recent orogenesis, negative anomalies are located beneath the depression of the Great Lakes in Mongolia and Hubsugul Lake. (2) A large negative anomaly is observed beneath the Hangai dome in Mongolia. (3) Strong velocity variations are obtained in a zone around Baikal Lake. A large negative anomaly is traced beneath the southern margin of the Siberian craton down to a depth of 700 km. Contrasting positive anomalies (4–5 per cent) are observed at a depth of 100–300 km beneath the Baikal rift. Our geodynamical interpretation of the velocity structure obtained beneath central Asia involves the existence of two processes in the mantle: thermal convection with regular cells, and a narrow plume beneath the southern border of the Siberian plate.  相似文献   

4.
Summary. A modification of the Aid et al . technique for three-dimensional lithospheric modelling is used to find smoothly varying models for the P -wave velocity structure beneath NORSAR. The method includes ray tracing and calculation of geometrical spreading in the anomalies. The results of linear inversion of the travel-time data compare well with those of previous investigators. The assumption of linearity, which removes the need to ray trace through the anomalies, is tested with iterative solutions for both synthetic and real data. A model with an rms velocity perturbation of 3 per cent, extending to 120 km depth, is found to be reasonably linear. In fact the procedure leads to two models which satisfy the same amount of the real data but which differ by far more than the standard errors. However, these differences are not significant once the imperfect resolution is accounted for by using the total estimation error of the stochastic inverse.
The depth of major anomalies appears to be greater than the array diameter and is therefore not well constrained. Comparing the geometrical spreading produced by these models with the amplitude variations observed at the array indicates that structure deeper than 120 km but shallower than 200 km makes an important contribution to the observations. None of the models used can produce variations as large as those in the amplitude data. For deep, essentially two-dimensional, anomalies the fit to these data is much better for sources to the NE of the array than for sources in other quadrants.  相似文献   

5.
Summary. This paper extends an earlier study (Sengupta & Julian) of travel times of P waves of deep-focus earthquakes to include shear waves. Primary advantage of deep-focus earthquakes is the reduction of anomalies caused by complex structures near the source. The standard deviations of travel times and station anomalies of this study are about half as large as those determined from the data of shallow-focus earthquakes (e.g. Herrin et al.; Hales & Roberts). Spherically-symmetric velocity models derived from the travel times by a linearized inverse technique have resolving lengths of about 70 km for standard errors in velocity of about 0.02 km/s. No pronounced reversal of either compressional or shear velocity was required at the base of the mantle to satisfy the data, though a small velocity decrease could not be entirely ruled out. Some anomalous rapid changes in compressional velocity gradient were, however, found centred around the depths of 2400 and 2600 km. The models derived in this study agree most closely with that of Herrin et al . for compressional velocity and the model 1066B of Gilbert & Dziewonski for shear velocity.  相似文献   

6.
Summary. An inversion of ISC travel-time data from selected earthquakes in the distance range 30°-90° to 53 stations in Central Europe has been used to model velocity down to 600 km depth. The model explains 0.1–0.2s of the residuals, as for other array studies, leaving 0.5 s unexplained as noise. The uppermost 100 km of the mantle and crust contains inhomogeneities that correlate remarkably well with the geology. This may be due to deep-seated thermal anomalies or, in some areas, to delays introduced by passage of the rays through sedimentary cover. The deeper anomalies are smaller and unrelated to those in the lithosphere, which suggests that the asthenosphere is decoupled from the rigid lithosphere. The structure at 600 km depth is again quite inhomogeneous and might be due to undulations of the 650 km discontinuity. The models show some suggestion of a high velocity slab trending from east to west beneath the Alps.  相似文献   

7.
Summary. The three-dimensional (3-D) shear wave structure of the mantle, down to the depth of about 900 km, is obtained by inverting waveforms of radial component seismograms. Radial component seismograms contain large amplitude overtone signals which circle the Earth as wave packets and are sometimes called X1, X2, X3, … We use data which contain R1, X1 and X2 and filtered between 2 and 10mHz. It is shown that, unless each seismogram is weighted, all seismograms are not fitted uniformly. Only data from large earthquakes are fitted and the final velocity anomalies are biased by the small number of large earthquake data. Resolution is good at shallow depths, becomes worse in the intermediate depth range between about 400 and 500 km and then becomes better at greater depth ranges (600–900km). Even though we use only spheroidal mode data, velocity anomalies in the shallow structure show excellent correlation with the age of the surface rocks of the Earth. In the deeper regions, between about 600 and 900km, South America shows a fast velocity anomaly which may indicate the slab penetration beyond 700 km there. Another region which shows a fast velocity anomaly is the Mariana trench, but other subduction regions do not show such features.  相似文献   

8.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region.  相似文献   

9.
Summary. Over 80 earthquakes, exclusively from the Hindukush focal region, which were recorded at the Gauribidanur seismic array (GBA) have been used in this study. These events have similar epicentral distances and a narrow azimuthal range from GBA but varying focal depths from 10 to 240 km. A fault plane dipping steeply (75°) in the north-west direction and striking N 66° E has been investigated on the basis of the spatial distribution of earthquakes in two vertical planes through 68° E and 32° N. Short period P -wave recordings up to 30 s were processed using the adaptive cross-correlation filtering technique. Slowness and azimuthal anomalies were obtained for first arrivals. These anomalies show positive as well as negative bias and are attributed to a steep velocity gradient in the upper mantle between the 400–700 km depth range where the seismic rays have their maximum penetration. Relative time residuals between the stations of GBA owe their origin very near to the surface beneath the array. A search of the signals across the array revealed that most of the events occurring at shallower depths had complex signatures as compared to the deeper events. The structure near the source region, complicated source functions and the scattering confined to the crust—upper mantle near source are mainly responsible for the complexity of the Hindukush earthquakes as the transmission zone of the ray tubes from turning point to the recording station is practically the same.  相似文献   

10.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

11.
New insight into the crust and upper mantle structure under Alaska   总被引:1,自引:0,他引:1  
To better understand the seismic structure of the subducting Pacific plate under Alaska, we determined the three-dimensional P-wave velocity structure to a depth of approximately 200 km beneath Alaska using 438,146 P-wave arrival times from 10,900 earthquakes. In this study an irregular grid parameterization was adopted to express the velocity structure under Alaska. The number of grid nodes increases from north to south in the study area so that the spacing between grid nodes is approximately the same in the longitude direction. Our results suggest that the subducting Pacific slab under Alaska can be divided into three different parts based on its geometry and velocity structure. The western part has features similar to those in other subduction zones. In the central part a thick low-velocity zone is imaged at the top of the subducting Pacific slab beneath north of the Kenai Peninsula, which is believed to be most likely the oceanic crust plus an overlying serpentinized zone and the coupled Yakutat terrane subducted with the Pacific slab. In the eastern part, significant high-velocity anomalies are visible to 60–90 km depth, suggesting that the Pacific slab has only subducted down to that depth.  相似文献   

12.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   

13.
Summary. Closely spaced refraction profiling across the Whipple Mountains metamorphic core complex in southeastern California yields a complex picture of crustal structure in this region of large continental extension. A NE-directed profile, parallel to the extension direction, reveals a high-velocity mid-crustal layer (6.6–6.8 km s−1) at 16-18 km depth, bounded above and below by laterally discontinuous low-velocity zones (<6.0 km s−1). In marked contrast, a NW-directed profile shows a more uniform 6.0 km s−1 crust down to the crust-mantle boundary. The apparent contrast between these two perpendicular profiles may be related not only to a more complex geologic structure in the NW-SE direction, but also to velocity anisotropy associated with mid-crustal mylonites. Despite the differences between the two refraction profiles, both define a flat Moho at 26-27 km depth with an associated upper mantle-velocity of 7.8 km s−1. This observation is significant as it suggests that, although the amount of extension has been highly variable regionally, the crust is no thinner beneath the Whipple Mountains (where extension has been extreme) than the surrounding mountain ranges. Such an observation requires either that the crust was considerably thicker prior to extension, or that lateral flow in the lower crust and/or inflation of the crust via magmatism occurred contemporaneous with extension.  相似文献   

14.
Broad-band P - and S -waves from earthquakes in South America recorded at Californian network stations are analysed to image lateral variations of the D"-discontinuity beneath the Cocos plate. We apply two array processing methods to the data set: a simplified migration method to the P -wave data set and a double-array method to both the P - and S -wave data sets, allowing us to compare results from the two methods. The double-array method images a dipping reflector at a depth range from 2650 to 2700 km in the southern part of the study area. We observe a step-like topography of 100 km to a shallower reflector at about 2600 km depth to the north, as well as evidence for a second (deeper) reflector at a depth range from 2700 to 2750 km in the north. Results from the simplified migration agree well with those from the double-array method, similarly locating a large step in reflector depth in a similar location (about 2650 km depth in the south and about 2550 km in the north) as well as the additional deeper reflector at the depth of about 2750 km in the north. Waveform modelling of the reflected waves from both methods suggests a positive velocity contrast for S waves, but a negative velocity contrast for P waves for the upper reflector in agreement with predictions from mineral physical calculations for a post-perovskite phase transition. The data also show some evidence for the existence of another deeper reflector that could indicate a double intersection of the geotherm with the post-perovskite stability field, that is, the back-transformation of post-perovskite to perovskite close to the core–mantle boundary.  相似文献   

15.
We modify the receiver-functions stacking technique known as velocity spectrum stacking (VSS) so as to estimate combinations of velocity model ( VP and VS ) and depth that stack the Ps conversion from upper-mantle discontinuities most coherently. We find that by estimating the differences in the depths to the 660 and 410 km discontinuities using velocities that maximize the stacked amplitudes of P410s and P660s phases we can estimate the thickness of the transition zone more accurately than the depths to either of these discontinuities. We present two examples indicating that the transition zone beneath Obninsk, Russia, is 252±6 km thick and that beneath Pasadena, California, is only 220±6 km thick.  相似文献   

16.
The inverse tomography method has been used to study the P - and S -waves velocity structure of the crust and upper mantle underneath Iran. The method, based on the principle of source–receiver reciprocity, allows for tomographic studies of regions with sparse distribution of seismic stations if the region has sufficient seismicity. The arrival times of body waves from earthquakes in the study area as reported in the ISC catalogue (1964–1996) at all available epicentral distances are used for calculation of residual arrival times. Prior to inversion we have relocated hypocentres based on a 1-D spherical earth's model taking into account variable crustal thickness and surface topography. During the inversion seismic sources are further relocated simultaneously with the calculation of velocity perturbations. With a series of synthetic tests we demonstrate the power of the algorithm and the data to reconstruct introduced anomalies using the ray paths of the real data set and taking into account the measurement errors and outliers. The velocity anomalies show that the crust and upper mantle beneath the Iranian Plateau comprises a low velocity domain between the Arabian Plate and the Caspian Block. This is in agreement with global tomographic models, and also tectonic models, in which active Iranian plateau is trapped between the stable Turan plate in the north and the Arabian shield in the south. Our results show clear evidence of the mainly aseismic subduction of the oceanic crust of the Oman Sea underneath the Iranian Plateau. However, along the Zagros suture zone, the subduction pattern is more complex than at Makran where the collision of the two plates is highly seismic.  相似文献   

17.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

18.
南极沿167°E子午线横贯南极山脉岩石圈速度结构   总被引:3,自引:0,他引:3       下载免费PDF全文
束沛镒  焦丞民 《极地研究》1999,11(3):221-227
依据沿大圆弧穿越南极点和斯科特站两地震台的地震瑞利面波波形资料,计算了两台之间的相速度频散,通过反演计算,获得了台间地下200km 岩石圈剪切波速度细结构。结果表明,横贯南极山脉地壳厚度约为45km ,55~75km 之间存在明显低速带,它预示着这一深度有熔融的岩浆存在。  相似文献   

19.
Global mapping of upper mantle reflectors from long-period SS precursors   总被引:1,自引:0,他引:1  
Long-period precursors to SS resulting from underside reflections off upper mantle discontinuities ( SdS where d is the discontinuity depth) can be used to map the global distribution and depth of these reflectors. We analyse 5,884 long-period seismograms from the Global Digital Seismograph Network (1976-1987, shallow sources, transverse component) in order to identify SdS arrivals. Corrections for velocity dispersion, topography and crustal thickness at the SS bounce point, and lateral variation in mantle velocity are critical for obtaining accurate estimates of discontinuity depths. The 410 and 660 km discontinuities are observed at average depths of 413 and 653 km, and exhibit large-scale coherent patterns of topography with depth variations up to 40 km. These patterns are roughly correlated with recent tomographic models, with fast anomalies in the transition zone associated with highs in the 410 km discontinuity and lows in the 660 km discontinuity, a result consistent with laboratory measurements of Clapeyron slopes for the appropriate phase changes. The best resolved feature in these maps is a trough in the 660 km discontinuity in the northwest Pacific, which appears to be associated with the subduction zones in this region. Amplitude variations in SdS arrivals are not correlated with discontinuity depths and probably result from focusing and defocusing effects along the ray paths. The SdS arrivals suggest the presence of regional reflectors in the upper mantle above 400 km. However, only the strongest of these features are above probable noise levels due to sampling inadequacies.  相似文献   

20.
Summary Recordings from a crustal seismic experiment, which was conducted in the Yellowknife area in 1966, were used for calibration of the Yellow-knife seismic array. In the immediate vicinity of the array the crust is found to be very uniform. A superficial layer with an intercept time of 0–172 ± 0–012s and unknown velocity is underlain by a crust with a P wave velocity of 6.04 ± 0–01 km s-1 near the top: assuming this velocity constant throughout the second layer, the total thickness of the crust is about 34 ± 2 km. The Mohorovicic discontinuity is horizontal under the array within the resolution of this experiment and the apparent Pn velocity is 8.15 km s-1. At a distance of a few tens of kilometres the crustal uniformity breaks down. The distances are such that, for most teleseismic signals, the effect of these in homogeneities should be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号