首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The origin and the chemical and isotopic evolution of dissolved inorganic carbon (DIC) in groundwater of the Okavango Delta in semi-arid Botswana were investigated using DIC and major ion concentrations and stable oxygen, hydrogen and carbon isotopes (δD, δ18O and δ13CDIC). The δD and δ18O indicated that groundwater was recharged by evaporated river water and unevaporated rain. The river water and shallow (<10 m) groundwater are Ca–Na–HCO3 type and the deep (≥10 m) groundwater is Na–K–HCO3 to HCO3–Cl–SO4 to Cl–SO4–HCO3. Compared to river water, the mean DIC concentrations were 2 times higher in shallow groundwater, 7 times higher in deep groundwater and 24 times higher in island groundwater. The δ13CDIC indicate that DIC production in groundwater is from organic matter oxidation and in island groundwater from organic matter oxidation and dissolution of sodium carbonate salts. The ionic and isotopic evolution of the groundwater relative to evaporated river water indicates two independent pools of DIC.  相似文献   

2.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

3.
Spatio‐temporal variations in nitrogen and phosphorus concentrations in groundwater were analysed and related to the variations in hydrological conditions, vegetation type and substrate in an alluvial ecosystem. This study was conducted in the Illwald forest in the Rhine Plain (eastern France) to assess the removal of nutrients from groundwater in a regularly flooded area. We compared both forest and meadow ecosystems on clayey‐silty soils with an anoxic horizon (pseudogley) at 1·5–2 m depth (eutric gley soil) and a forest ecosystem on a clayey‐silty fluviosoil rich in organic matter with a gley at 0·5 m depth (calcaric gley soil). Piezometers were used to measure the nutrient concentrations in the groundwater at 2 m depth in the root layer and at 4·5 m depth, below the root layer. Lower concentrations of nitrate and phosphate in groundwater were observed under forest than under meadow, which could be explained by more efficient plant uptake by woody species than herbaceous plants. Thus NO3‐N inputs by river floods were reduced by 73% in the shallow groundwater of the forested ecosystem, and only by 37% in the meadow. Compared with the superficial groundwater layer, the lowest level of nitrate nitrogen (NO3‐N) and the highest level of ammonium nitrogen (NH4‐N) were measured in the deep layer (under the gley horizon at 2·5 m depth), which suggests that the reducing potential of the anoxic horizon in the gley soils contributes to the reduction of nitrate. Nitrate concentrations were higher in the groundwater of the parcel rich in organic matter than in the one poorer in organic matter. Phosphate (PO4‐P) concentrations in both shallow and deep groundwater are less than 62 to 76% of those found in surface water which can be related to the retention capacity of the clay colloids of these soils. Moreover, the temporal variations in nutrient concentrations in groundwater are directly related to variations in groundwater level during an annual hydrological cycle. Our results suggest that variations in groundwater level regulate spatio‐temporal variations in nutrient concentrations in groundwater as a result of the oxidation–reduction status of soil, which creates favourable or unfavourable conditions for nutrient bioavailability. The hydrological variations are much more important than those concerning substrate and type of vegetation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
环太湖江苏段入湖河道污染物通量与湖区水质的响应关系   总被引:1,自引:1,他引:0  
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制.  相似文献   

5.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Aquifer storage and recovery (ASR) can provide a means of storing water for irrigation in agricultural areas where water availability is limited. A concern, however, is that the injected water may lead to a degradation of groundwater quality. In many agricultural areas, nitrate is a limiting factor. In the Umatilla Basin in north central Oregon, shallow alluvial groundwater with elevated nitrate‐nitrogen of <3 mg/L to >9 mg/L is injected into the Columbia River Basalt Group (CRBG), a transmissive confined aquifer(s) with low natural recharge rates. Once recovery of the injected water begins, however, NO3‐N in the recovered water decreases quickly to <3 mg/L (Eaton et al. 2009), suggesting that NO3‐N may not persist within the CRBG during ASR storage. In contrast to NO3‐N, other constituents in the recovered water show little variation, inconsistent with migration or simple mixing as an explanation of the NO3‐N decrease. Nitrogen isotopic ratios (δ15N) increase markedly, ranging from +3.5 to > +50, and correlate inversely with NO3‐N concentrations. This variation occurs in <3 weeks and recovery of <10% of the originally injected volume. TOC is low in the basalt aquifer, averaging <1.5 mg/L, but high in the injected source water, averaging >3.0 mg/L. Similar to nitrate concentrations, TOC drops in the recovered water, consistent with this component contributing to the denitrification of nitrate during storage.  相似文献   

7.
In order to help evaluate the trends in the NO3-N concentration in groundwater with a view to preventing further degradation in water quality in the future, a distributed groundwater quality model was constructed for the Nasunogahara basin. The best fit for the groundwater table elevations by the flow component of the model was achieved with average mean absolute errors (MAEs) of 0·92 m for the calibration period and 0·83 m for the validation period. Moreover, the best fit for the NO3-N concentration by the water quality component was achieved with average mean relative errors (MREs) of 29·8% for the calibration period and 30·3% for the validation period. After developing a robust model, various change scenarios were tested; specifically, the effects of effluent load control and a decrease in paddy field area on the NO3-N concentration in groundwater were predicted. The most intensively farmed area contributed about 40% of the total effluent load because of livestock farming in the basin. When the effluent load from this area was decreased by 50%, the average NO3-N concentrations at sites S1, S2 and S3 were reduced by about 15%; however, the average concentrations at S4 and S5 were reduced by only 1%. Furthermore, when the total effluent load from the concentrated livestock area was removed completely, the average groundwater NO3-N concentrations at S1, S2 and S3 were reduced by about 30% as compared with the original calculated results. In contrast, decreasing the area of the paddy fields in the basin did not greatly influence the groundwater NO3-N concentration. In the case of a 70% reduction in paddy field area, average NO3-N concentrations increased by about 7% at S1, S2 and S3. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

A field experiment was conducted on a sloping grassland soil in southwest England to investigate the downslope transport of nitrogen in soil water following the application of cattle manure, slurry and inorganic fertilizer. Transport of nitrogen (N) species was monitored on hydrologically isolated plots. Manure (50 t ha?1), slurry (50 m3 ha?1) and fertilizer (250 kg N ha?1) were applied in February/March 1992. Subsurface water movement, by both matrix and preferential flow, was the dominant flow route during the experiment. Subsurface and surface nutrient flow pathways were monitored by analysing soil water and surface runoff for NO3-N, NH4-N and total N. Subsurface flow chemistry was dominated by NO3-N, with concentrations usually between 2 and 5 mg NO3 ?N dm?3. Differences between fertilizer and manure treatments and the untreated control were not significant. Significantly elevated NO3-N concentrations were observed in soil water in the buffer zone, indicating the importance of a buffer zone at least 10 m wide between manure spreading zones and an adjacent water course.  相似文献   

9.
A geochemical study was carried out in a small spa area (Onyang Spa, Korea) where intensive pumping of deep thermal groundwater (1 300 000 m3 year−1) is taking place. This has caused the deep fractures to lose their artesian pressure and the upper shallow fractures have been encroached by shallow, cold waters. To quantify the influence of long‐term heavy pumping on the quality of the geothermal water, groundwater sampling and chemical analysis, water‐level measurement, and well loggings were performed for the selected deep thermal wells and shallow cold wells. Chemical analysis results indicate a big contrast in water chemistry and origins between the two water types. Shallow groundwater shows a wider concentration ranges in solutes that are closely related to human activity, illustrating the water's vulnerability to contamination near the land surface. Plots of water chemistry as a function of fluoride reveal that the quality of the thermal water was greatly influenced by the shallow, cold groundwater and that intensive pumping of the deep thermal groundwater has caused the introduction of shallow groundwater into the deeper fractures. Although the deep and the shallow fractures were piezometrically separated to some extent, a mixing model based on fluoride and nitrate indicated that the cold‐water fractions in the thermal wells are up to 50%. This suggests that the thermal water is faced with water quality degradation by the downward flow of the shallow, cold water. Restriction on the total of all the pumpage permits per unit area is suggested to restore the artesian pressure of the deep thermal aquifer and to prevent cold‐water intrusion in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
湖光岩玛珥湖水体中营养盐的时空分布特征及其影响因素   总被引:1,自引:0,他引:1  
湖光岩玛珥湖是世界上最大的玛珥湖,它几乎是封闭的,受外界的干扰小.目前有关玛珥湖的研究主要集中在古气候及生态环境研究方面,而有关玛珥湖营养盐在一年中的生物地球化学循环的研究较少,因此研究湖光岩玛珥湖营养盐的生物地球化学过程具有重要意义.于2015年10月-2016年9月对湖光岩玛珥湖全水柱的营养盐及其他相关参数进行逐月调查,分析营养盐的结构特征、垂直分布特征和时间变化情况,并讨论营养盐时空变化的影响因素.结果表明,湖光岩玛珥湖水中的无机氮(DIN)以铵态氮(NH4+-N)为主(>60%),其次是硝态氧(NO3--N),亚硝态氮(NO2--N)所占比利最低.湖光岩玛珥湖水中的硅酸盐(SiO32--Si)浓度较高,水体浮游植物生长受磷限制.冬季风期间,水体垂直混合较均匀,导致营养盐的垂直分布比较均匀;夏季风期间,水体层化,营养盐浓度在浅层水体较低,在深层水体较高.湖光岩玛珥湖表层水中的NO3--N、NH4+-N和SiO32--Si具有明显的时间变化规律:NO3--N浓度从10月-次年3月升高,从3-9月降低;NH4+-N浓度从10月-次年5月降低;SiO32--Si浓度从11月-次年5月降低,从5-9月持续升高.营养盐浓度的时间变化受有机质的矿化分解、水体的季节性混合、浮游植物的吸收、降雨的输入等多种因素的综合影响.  相似文献   

11.
The objectives of this research were to evaluate the effect of land-use change on streamflow, sediment and water quality data along the Lower Yom River, Thailand, covering an intensively agricultural area of 14 613.6 km2, and to assess the relative impact of point and non-point sources of pollution from multiple-land-use watersheds. Long-term calibration and validation of the SWAT (Soil and Water Assessment Tool) model was performed on data for 2000–2013. Land-use change led to a 13–49% increase in runoff in the basin and resulted in 37–427% increased sediment yield. The amount of NO3-N load doubled in the upper and middle parts of the study area, while the increase in PO43– ranged from 37 to 377%, reflecting the increase in agricultural lands and urban areas. It is concluded that the changed land use is closely associated with the quantity of runoff, sediment yield and the NO3-N and PO43– concentrations.  相似文献   

12.
城市污染河道沉积物可提取态氮的提取方式比较   总被引:4,自引:0,他引:4  
许宽  刘波  王国祥  周锋  凌芬  杜旭 《湖泊科学》2012,24(4):541-545
以城市污染河道——南京仙林大学城九乡河表层沉积物为研究对象,探讨沉积物常用提取剂(1 mol/L KCl、2 mol/L KCl、4 mol/L KCl和0.01 mol/L CaCl2)在不同液土比(5∶1、10∶1、50∶1和100∶1)条件下,对城市污染河道沉积物可提取态氮(NH4+-N、NO3--N)测定的影响.结果表明:KCl的提取效果要优于CaCl2,二者NH4+-N提取量分别为312.17~479.23、177.52~339.31 mg/kg,NO3--N提取量分别为4.49~21.56、4.25~8.53 mg/kg;可提取态氮提取量随液土比增高而增大,其中1 mol/L KCl组,液土比100∶1时NH4+-N和NO3--N提取量分别比液土比5∶1时增加41.97%和187.08%;NH4+-N提取量随提取剂浓度增高而增大,NO3--N随提取剂浓度增高而降低;采用1 mol/L KCl提取剂、液土比100∶1的组合联合提取城市污染河道沉积物中的NH4+-N、NO3--N,提取效果较好.  相似文献   

13.
以流经四川绵阳市安县河流茶坪河为研究对象,在对该河流水污染负荷、水环境现状及水环境功能充分调查的基础上,结合该河流的水文特征和排水规划以及四川省绵阳市环境监测站2005年实测的数据,采用二维浅水水动力学—水质模型方程组对茶坪河的各监测断面CODCr和NH3-N的浓度场进行了计算模拟和对比,并用一维水环境容量计算模型计算了该河流的水环境容量,提出了具体的总量控制措施.结果表明:用二维浅水水动力学—水质模型方程组计算各监测断面的CODCr和NH3-N与实测值相差不大;茶坪河水环境容量CODCr为123.96t/a,NH3-N为42.95t/a,所排放的CODCr量、NH3-N量已经超过该流域容量,出水水质已超过水质保护目标Ⅲ类标准.  相似文献   

14.
水产养殖清塘过程中的排水是造成周边水环境污染的重要环节,但对此环节中污染物排放特征和影响程度的研究仍相对不足。为有效减少清塘过程的排水对环境的污染,推进水产养殖业绿色发展,本研究选取典型鱼类集约化养殖区,通过高频采样和监测,分析了阶段式排水时混养鱼塘尾水中的悬浮物、有机物和营养盐等指标的浓度变化,明确污染物的排放特征,同时分析受纳水体不同断面的水质变化情况。研究结果表明:总悬浮物浓度(TSS)、高锰酸盐指数(CODMn)、总磷(TP)、总氮(TN)和氨氮(NH3-N)浓度随着持续排水呈上升趋势,在排水末期污染物浓度均快速上升,磷酸盐磷(PO43--P)浓度仅在排水末期骤升,硝态氮(NO3--N)浓度随排水持续下降,亚硝态氮(NO2--N)浓度随排水先上升后下降;根据《淡水池塘养殖水排放要求》二级标准,排水末期TN、TP、TSS浓度超标倍数分别达4.70、6.66、206.90;尾水流量与河流量约以1/200的比例...  相似文献   

15.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

17.
崔旭  张兵  何明霞  夏文雪  王义东  赵勇 《湖泊科学》2021,33(6):1675-1686
生态补水是维持和改善白洋淀生态环境的重要途径.为研究生态补水对白洋淀水环境的影响,分别在补水前与补水后采集淀水、河水及地下水样品,分析区域地表水和地下水水化学特征.结果表明:(1)白洋淀补水前、后地表水与地下水的水化学组成中Na+为主要阳离子,补水后阴离子以HCO3-为主,淀区南部地表水电导率高;补水后地表水与地下水Ca2+、Mg2+和HCO3-浓度显著增加,水体电导率降低.(2)补水前地下水为Na-HCO3型水,地表水主要为Na-Cl·SO4及Na-Cl·HCO3类型;补水后地表水与浅层地下水向Ca·Mg-HCO3型演化,深层地下水水化学类型基本保持不变.(3)生态补水使白洋淀水位升高,淀区水面积增大,缓解了水资源短缺的问题;同时也使浅层地下水水化学组成发生改变,而深层地下水暂未受到影响.生态补水后,受稀释和混合作用的影响,水体Na+、Cl-和SO42-浓度显著下降,Ca2+、Mg2+及HCO3-浓度增加.在白洋淀生态补水中应"先治污,后补水",以减少补水过程中污染物向淀区的运移,还应注意区域地下水位上升过程中的阳离子交换及水岩相互作用,为合理调配生态补水及改善白洋淀生态环境提供科学依据.  相似文献   

18.
In many agricultural areas, hedgerows give rise to strong expectations of reducing the inputs of excess nitrate to the groundwater and rivers. This study aims to analyse the spatial and seasonal influences of a hedgerow on nitrate dynamics in the soil and groundwater. Nitrate (NO3?) and chloride (Cl?) concentrations were measured with spatially dense sampling in the unsaturated soil and in the groundwater along a transect intersecting a bottomland oak (Quercus rubor) hedgerow after the growing season and during the dormant season. We explain NO3? dynamics by using Cl? as an index of tree‐root extension and water transfer. At the end of the growing season, NO3? is entirely absorbed by the trees over a large and deep volume corresponding to the rooting zone, where, in contrast Cl? is highly concentrated due to root exclusion. However, these observed patterns in the soil have no influence on the deep groundwater composition at this season. During the dormant season, water transfer processes feeding the shallow groundwater layer are different upslope and downslope from the hedgerow in relation to the thickness of the unsaturated zone. Upslope, the shallow groundwater is fed by rainwater infiltration through the soil which favours Cl? dilution. Right under the hedge and downslope, the rapid ascent of the groundwater near the ground surface prevents rainwater input and Cl? dilution. Under the hedgerow the highest concentrations of Cl? coincide with the absence of NO3? in the shallow groundwater layer and with high concentrations of dissolved organic carbon. The absence of NO3? during the dormant season seems to be due to denitrification in the hedgerow rooting zone when it is rapidly saturated by groundwater. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Sourcing subsurface evaporation (Ess) into groundwater (Eg) and unsaturated zone (Eu) components has received little scientific attention so far, despite its importance in water management and agriculture. We propose a novel sourcing framework, with its implementation in dedicated post-processing software called SOURCE (used along with the HYDRUS1D model), to study evaporation sourcing dynamics, define quantitatively “shallow” and “deep” water table conditions and test the applicability of water table fluctuation (WTF) and “bucket” methods for estimation of Eg and Eu separately.

For the “shallow” and “deep” water table we propose Eg?>?0.95Ess and Eg = 0 criteria, respectively. Assessment of the WTF method allowed sourcing of very small fluxes otherwise neglected by standard hydrological methods. Sourcing with SOURCE software was more accurate than the standard “bucket” method mainly because of greater flexibility in spatio-temporal discretization. This study emphasized the dry condition relevance of groundwater evaporation which should be analysed by applying coupled flow of heat, vapour and liquid water.
Editor D. Koutsoyiannis; Associate editor S. Kanae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号