首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Neo-Archean Dominion Reefs (~3.06 Ga) are thin meta-conglomerate layers with concentrations of U- and Th-bearing heavy minerals higher than in the overlying Witwatersrand Reefs. Ore samples from Uranium One Africa’s Rietkuil and Dominion exploration areas near Klerksdorp, South Africa, were investigated for their mineral paragenesis, texture and mineral chemical composition. The ore and heavy mineral assemblages consist of uraninite, other uraniferous minerals, Fe sulphides, Ni–Co sulfarsenides, garnet, pyrite, pyrrhotite, monazite, zircon, chromite, magnetite and minor gold. Sub-rounded uraninite grains occur associated with the primary detrital heavy mineral paragenesis. U–Ti, U–Th minerals, pitchblende (colloform uraninite) and coffinite are of secondary, re-mobilised origin as evidenced by crystal shape and texture. Most of the uranium mineralisation is represented by detrital uraninite with up to 70.2 wt.% UO2 and up to 9.3 wt.% ThO2. Re-crystallised phases such as secondary pitchblende (without Th), coffinite, U–Ti and U–Th phases are related to hydrothermal overprint during low-grade metamorphism and are of minor abundance.  相似文献   

2.
The quartz-pebble conglomerate (QPC)-hosted detrital uranium mineralization is unique in character in terms of their restricted distribution before 2.2 Ga atmosphere during pre-Great Oxidation Event (pre-GOE). Such QPC paleoplacer deposits over the world are good targets for moderate to high tonnage and low grade uranium deposits and more importantly for their gold content. The Mahagiri Quartzite, dated c. 3.02 Ga for their youngest detrital zircon population, is developed unconformably over the Mesoarchean Singhbhum Granite (3.44 Ga to 3.1 Ga). The Mahagiri Quartzite includes a conglomerate-pebbly sandstone dominated subaerial alluvial fan to coastal braided plain sequence in the lower parts and shallow marine mature quartz arenite in the upper parts. The alluvial fan-braided plain deposits in the lower parts host a number of pyritiferous and uraniferous conglomerate and pebbly sandstone beds. The uraninite grains are rounded to subrounded in outline suggesting mechanical transport and detrital origin. Together with detrital pyrite and uraninite constitute the example of > 3.0 Ga paleoplacer closely comparable to the Witwatersrand Au–U deposits. EPMA and SEM-EDS studies suggest that the uraninite grains are rich in Th (> 4 wt.%), S and REE-Y. Chemical formula calculations from EPMA analyses suggest uraninite grains belong to two populations with different oxidation states as revealed from Y/REE and cation U4 +: U6 + [apfu] ratios. The U contents of the detrital uraninite grains from Mahagiri are significantly lower than that of the ideal stoichiometric composition of UO2. This is mainly due to higher amount of heterovalent cationic substitution by Th, REE, Y, Pb, and Ca in Mahagiri QPC uraninite structures, and partial alteration and metamictization of uraninites. Alteration due to metamictization resulted in elevated concentration of Si, Al, P, and Ca in more altered and metamict uraninite grains. The REE pattern is typically flat with comparable LREE–HREE concentration. The high Th content flat REE-pattern suggests that the uraninitere presents high temperature phases (> 350 °C) and are magmatic in origin. The Mahagiri detrital uraninite grains suggest existence of highly felsic and K-rich (richer than TTG) granodiorite–granite–monzogranite suites (GGM) of rocks older than 3.1 Ga in the Singhbhum craton.  相似文献   

3.
贵州云峰铝土矿中铀矿物的发现   总被引:1,自引:1,他引:0  
有关铝土矿中铀富集的报道很多,但至今未见独立铀矿物存在的相关文献。本次研究采用岩相学观察、X衍射(XRD)、ICP-MS、电子探针(EPMA)、拉曼光谱分析等手段,对黔中典型的铝土矿——云峰铝土矿中的晶质铀矿进行了研究。研究发现该铝土矿床中,铀富集明显(w(U)(18×10~(-6)~62×10~(-6)),平均值35×10~(-6)),铀矿物大小呈微米至亚微米级,围绕锐钛矿边缘生长、或充填于高岭石微裂隙中、或散布于与黄铁矿密切相关的高岭石或硬水铝石中。铀矿物的主要组分为UO_2(w(UO_2)为52.2%~80.88%)和TiO_2(w(TiO_2)为1.85%~14.98%);电子探针面扫描显示铀矿物中钛分布不均匀;铀矿物的拉曼特征波长为442 cm~(-1)和454 cm~(-1),因此,初步推测铀矿物为晶质铀矿和含钛晶质铀矿。其形成过程大致如下,来源于下寒武统牛蹄塘组黑色岩系中的铀(U~(4+))在风化过程中氧化为U~(6+)、析出、被Al~-, Fe~-氧化物/氢氧化物吸附;在沉积和成岩过程中,随着三水铝石转变为勃姆石和硬水铝石、铁氧化/氢氧化物转变为黄铁矿,吸附的铀解吸、还原(U~(6+)至U~(4+))、最后形成铀矿物。  相似文献   

4.
There is currently a lack of well‐characterised matrix‐matched reference materials (RMs) for forensic analysis of U‐rich materials at high spatial resolution. This study reports a detailed characterisation of uraninite (nominally UO2+x) from the Happy Jack Mine (UT, USA). The Happy Jack uraninite can be used as a RM for the determination of rare earth element (REE) mass fractions in nuclear materials, which provide critical information for source attribution purposes. This investigation includes powder X‐ray diffraction (pXRD) data, as well as major, minor and trace element abundances determined using a variety of micro‐analytical techniques. The chemical signature of the uraninite was investigated at the macro (cm)‐scale with micro‐X‐ray fluorescence (µXRF) mapping and at high spatial resolution (tens of micrometre scale) using electron probe microanalysis (EPMA) and laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analyses. Based on EPMA results, the uraninite is characterised by homogeneous UO2 and CaO contents of 91.57 ± 1.49% m/m (2s uncertainty) and 2.70 ± 0.38% m/m (2s), respectively. Therefore, CaO abundances were used as the internal standard when conducting LA‐ICP‐MS analyses. Overall, the major element and REE compositions are homogeneous at both the centimetre and micrometre scales, allowing this material to be used as a RM for high spatial resolution analysis of U‐rich samples.  相似文献   

5.
晶质铀矿和沥青铀矿是热液铀矿床的主要工业铀矿物,在研究热液铀矿床成因及成矿规律方面具有重要的意义。攀枝花大田地区是我国混合岩型热液铀矿分布区,已发现粗粒特富铀矿滚石(铀含量10%)及较富基岩矿石(铀含量为0.1%~2%),主要铀矿物为晶质铀矿,对两种晶质铀矿成分及形成时代的研究对该区混合岩型热液铀矿成矿规律研究具有重要的价值。本文通过对大田地区滚石中的晶质铀矿和基岩矿石中的晶质铀矿进行矿物学及电子探针分析,研究了晶质铀矿的成分及形成时代。结果表明:(1)大田地区滚石和基岩矿石中的晶质铀矿除铅之外化学成分较为相似,两类矿石晶质铀矿中UO_2含量为77.36%~84.04%,ThO_2含量为0.98%~5.59%,PbO含量为1.79%~8.8%,其中滚石晶质铀矿中的铅含量低于基岩晶质铀矿,钍含量高于基岩晶质铀矿;(2)电子探针化学定年结果表明,基岩矿石晶质铀矿的形成时代为774.9~785.5 Ma,滚石晶质铀矿的形成时代为783.7 Ma,与传统同位素测年结果(775~777.6 Ma)非常一致,一方面说明滚石晶质铀矿和基岩晶质铀矿为同一时代的产物,另一方面说明电子探针原位测年方法是可靠的;(3)在后期的热液蚀变中,晶质铀矿先后发生了硅化、碳酸盐化及赤铁矿化,蚀变发生的时间分别为730.6Ma、699.8 Ma和664.0 Ma。此结论对研究攀枝花大田地区热液铀矿成矿时代及成矿作用过程提供了依据。  相似文献   

6.
At the Zhelannoe quartz deposit, the content of monazite attains 0.5 wt % in unaltered sericitolite and 18 wt % in hydrothermally altered sericitolite. Two monazite generations, including four varieties, characterize the sequence of formation and alteration of sericitolite bodies at the Zhelannoe deposit. Monazite of the first generation occurs in unaltered sericitolite as prismatic and tabular crystals characterized by (Nd,Ce) > La and enrichment in HREEs and ThO2 (5–16 wt %). Its formation is accompanied crystallization of milk white quartz. Monazite of the second generation occurs in altered sericitolite as the product of recrystallization of the first-generation monazite. The large drusy crystals of second-generation monazite were formed similarly with Alpine-type veins. Monazite of the second generation is characterized by Ce > (La,Nd), low contents of HREEs and ThO2 (0.5–7 wt %) and high contents of CaO and SO3 (up to 3–5 wt %). Monazite of the second generation appeared as a result of local superimposed processes and is a characteristic feature of the Zhelannoe deposit.  相似文献   

7.
A comparative in situ LA-ICP MS trace-element study on pyrite from three different, variably auriferous, Archaean to Palaeoproterozoic palaeoplacer deposits in the Ouro Fino Syncline (Quadrilátero Ferrífero; Brazil), the Elliot Lake area north of Lake Huron (SE Canada) and several deposits within the Witwatersrand Basin (South Africa) revealed systematic differences between morphologically different pyrite types and between the various palaeoplacer deposits. Especially the Ni and Au concentrations as well as Co/Ni and Mo/Ni ratios were found to be systematically different in detrital compact, detrital porous and post-sedimentary/hydrothermal pyrite grains from different source areas. High Co/Ni ratios and low Au concentrations are typical of post-sedimentary pyrite, which is hydrothermal in origin. In contrast, relatively low Co/Ni ratios and high Au contents characterise detrital porous banded and concentric pyrite grains (Au > 1 ppm), which are syn-sedimentary in origin. In the Elliot Lake area and the Witwatersrand Basin, detrital compact rounded pyrite is characterised by high Co/Ni ratios, which is in agreement with derivation from a hydrothermal source. Low Au concentrations in this pyrite type support the contention of the gold and the pyrite in these deposits coming from different source rocks. In contrast, derivation from an originally diagenetic pyrite is suggested for the detrital compact pyrite in the Ouro Fino Syncline because of low to intermediate Co/Ni ratios. High Au contents may indicate a genetic relationship between pyrite and gold there. Systematic differences exist between the three areas with respect to Au, Ni, Co, Mo and Cu distributions in detrital pyrite, which reflects differences in the provenance. A predominantly mafic/ultramafic source is indicated for the Ouro Fino, a felsic source for the Elliot Lake, and a mixed felsic–mafic provenance for the Witwatersrand pyrite populations. Independently of pyrite type, the higher Au endowment of the studied Witwatersrand and Ouro Fino conglomerates are also reflected by an overall higher Au concentration in the respective pyrite grains compared to the relatively Au-poor samples from Elliot Lake. In general, a strong positive correlation between Au and Pb levels in the various pyrite grains is noted. Analogous to Pb, which is well known for not being easily accommodated in the pyrite crystal lattice but occurring as discrete PbS phases, Au is considered to be present mainly in the form of discrete Au phases in minute pores and interstices of the pyrite grains rather than within the pyrite lattice.  相似文献   

8.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

9.
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relative to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. This result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.  相似文献   

10.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

11.
A quantitative evaluation of the solubility of uraninite (UO2) in aqueous solutions under hydrothermal conditions was made using previously reported thermodynamic data, so as to inquire into the controlling factors for Canadian unconformity-type ore mineralization as observed in the Athabasca uranium field. The results of solubility calculations suggest that uranyl carbonate complexes, such as UO2CO 3 o , UO2(CO3) 2 2- and UO2(CO3) 3 4- , predominate under relatively oxidizing and slightly acidic-alkaline conditions and that the uranyl chloride complex, UO2Cl+ is dominant under acidic conditions. These features are predicted at temperatures up to 200 °C over reasonable ranges of CO2 pressure (Pco2) and salinity. Consequently, the physico-chemical parameters, such as oxygen activity (ao2), and pH are regarded as the most important factors controlling uraninite solubility. Judging from the paragenetic sequences observed in most unconformity-type uranium deposits in the Athabasca district, appreciable decreases in the above variables are postulated to have occurred in the stage of principal uranium deposition. Such changes would be due to fluid-mixing phenomenon accompanied by the diagenetic-hydrothermal activity (Hoeve and Quirt 1987).  相似文献   

12.
The long-term stability of biogenic uraninite with respect to oxidative dissolution is pivotal to the success of in situ bioreduction strategies for the subsurface remediation of uranium legacies. Batch and flow-through dissolution experiments were conducted along with spectroscopic analyses to compare biogenic uraninite nanoparticles obtained from Shewanella oneidensis MR-1 and chemogenic UO2.00 with respect to their equilibrium solubility, dissolution mechanisms, and dissolution kinetics in water of varied oxygen and carbonate concentrations. Both materials exhibited a similar intrinsic solubility of ∼10−8 M under reducing conditions. The two materials had comparable dissolution rates under anoxic as well as oxidizing conditions, consistent with structural bulk homology of biogenic and stoichiometric uraninite. Carbonate reversibly promoted uraninite dissolution under both moderately oxidizing and reducing conditions, and the biogenic material yielded higher surface area-normalized dissolution rates than the chemogenic. This difference is in accordance with the higher proportion of U(V) detected on the biogenic uraninite surface by means of X-ray photoelectron spectroscopy. Reasonable sources of a stable U(V)-bearing intermediate phase are discussed. The observed increase of the dissolution rates can be explained by carbonate complexation of U(V) facilitating the detachment of U(V) from the uraninite surface. The fraction of surface-associated U(VI) increased with dissolved oxygen concentration. Simultaneously, X-ray absorption spectra showed conversion of the bulk from UO2.0 to UO2+x. In equilibrium with air, combined spectroscopic results support the formation of a near-surface layer of approximate composition UO2.25 (U4O9) coated by an outer layer of U(VI). This result is in accordance with flow-through dissolution experiments that indicate control of the dissolution rate of surface-oxidized uraninite by the solubility of metaschoepite under the tested conditions. Although U(V) has been observed in electrochemical studies on the dissolution of spent nuclear fuel, this is the first investigation that demonstrates the formation of a stable U(V) intermediate phase on the surface of submicron-sized uraninite particles suspended in aqueous solutions.  相似文献   

13.
This paper reports a geochemical and mineralogical study on carbonatites from the Guli massif, which hosts rare-metal mineralization. The principal carriers of radioactive elements in the carbonatites are pyrochlore-group minerals, zirconolite, and thorianite, which are described here. They are characterized by elevated concentrations (wt %) of radioactive elements: up to 17.89 UO2 and 20.01 ThO2 in pyrochlore, up to 6.49 UO2 and 94.29 ThO2 in thorianite, and up to 6.74 ThO2 in zirconolite. The pyrochlore-group minerals, zirconolite, and thorianite from the early calcite carbonatites occur in intimate association with Ti-Zr oxides calzirtite, perovskite, and baddeleyite. Significant radioactive element fractionation in early-stage derivatives results in the depletion of the residual magmatic products in these elements. The dolomite carbonatites are reported to contain only trace amounts of pyrochlore-group minerals. It was shown that the distribution of U, Th, Nb, and Ta in the calcite and dolomite carbonatites is correlated with the evolutionary trends of pyrochlore composition. Typical schemes of isomorphic substitution are proposed for pyrochlore-group minerals and zirconolite. The pyrochlore-group minerals show an apparent evolutionary trend from U-rich towards more Th- and Ta-rich varieties, and Ba-Sr cation-deficient varieties originate during the latest stage of the evolution. The pyrochlore-group minerals, zirconolite, and thorianite may also accumulate in placers, together with gold. Because of the relative ease of extraction of the accessory minerals, the carbonatites of the Guli massif can be considered as commercial sources of radioactive raw materials.  相似文献   

14.
Uranium minerals from the San Marcos District, Chihuahua, Mexico   总被引:1,自引:0,他引:1  
The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.  相似文献   

15.
Summary Zircon in the Ririwai biotite granite, and its albitized and greisenized varieties, is described by reflected-light and backscattered-electron (BSE) microscopy, and electron-microprobe analysis. The three rock-types show different features in their zircons. In biotite granite, some grains are corroded, and a patchy alteration is found which also affects zircons in greisenized rocks. Dark (low-reflectance) patches are enriched in minor elements (up to 7.9 wt% ThO2, 4.0 UO2 and 4.8 Y2O3). They are inferred to be metamict, from a combination of analytical evidence (low totals) and dark appearance in BSE images. The latter effect indicates the presence of submicroscopic voids. The dark patches are also inferred to contain hydroxyl anions. Albitized rocks have distinctive zircons with U-enriched cores (up to 6.1 wt% UO2), and Hf-enriched margins (up to 14.0wt% HfO2) with fine-scale growth-zoning of their Hf content. These grains are unaltered and are thought to have grown from the metasomatizing fluids, which the mineralogy indicates were fluorine-bearing. Fluoride complexing was probably important in the transport of the elements. A new interpretation proposed here, for numerous small inclusions of thorite in some parts of grains, is exsolution (following metastable growth of Th, U-rich zircon).
Die Zirkon-Thorit Mineralgruppe im metasomatisierten Granit von Ririwai, Nigeria. 2. Zonierung, Alteration und Entmischungen im Zirkon
Zusammenfassung Zirkon aus dem Ririwai-Biotit-Granit und aus seinen albitisierten und vergreisten Varietäten wurde mit Auflicht-Mikroskopie, Backscatter Mikroskopie (BSE) und Mikrosonde untersucht. Die drei Gesteinstypen zeigen unterschiedliche Zirkonarten. Im Biotit-Granit sind manche Zirkonkörner korrodiert. Fleckige Alteration tritt sowohl bei Zirkonen aus dem Biotit-Granit wie auch in vergreisten Gesteinen auf. Dunkle (niedrig reflektierende) Flecken sind an Spurenelementen angereichert (bis zu 7,9 Gew.% ThO2, 4,0% UO2 und 4,8% Y2O3). Aus den analytischen Daten (niedrige Totale) und ihrem dunklen Erscheinen im BSE-Bild kann vermutet werden, daß sie metamikt sind. Dies deutet weiters auf das Vorhandensein von submikroskopischen Leerstellen hin. Die dunklen Flecken führen vermutlich auch Hydroxyl-Anionen. Die albitisierten Gesteine führen Zirkone mit U-angereicherten Kernen (bis 6,1 Gew.-% UO2), Hf-reichen Rändern (bis 14,0 Gew.-%1 HfO2) und mit einer feinen Wachstumszonierung des Hf-Gehaltes. Es handelt sich hierbei um unveränderte Körner, welche aus metasomatischen Fluida entstanden sind. Mineralogische Daten weisen darauf hin, daß die Fluida fluorführend waren. Fluorid-Komplexe haben wahrscheinlich eine große Bedeutung für den Transport der Elemente. Zahlreiche kleine Thorit-Einschlüsse in bestimmten Teilen der Zirkonkörner werden hier als Entmischungen (gefolgt von metastabilem Wachstum von Th, U-reichem Zirkon) interpretiert.


With 7 figures  相似文献   

16.
In the San Marcos ranges of Cuatrociénegas, NE Mexico, several sediment-hosted copper deposits occur within the boundary between the Coahuila Block, a basement high mostly granitic in composition and Late Paleozoic to Triassic in age, and the Mesozoic Sabinas rift basin. This boundary is outlined by the regional-scale synsedimentary San Marcos Fault. At the basin scale, the copper mineralization occurs at the top of a ~1000 m thick red-bed succession (San Marcos Formation, Berrisian), a few meters below a conformable, transitional contact with micritic limestones (Cupido Formation, Hauterivian to Aptian). It consists of successive decimeter-thick roughly stratiform copper-rich horizons placed just above the red-beds, in a transitional unit of carbonaceous grey-beds grading to micritic limestones. The host rocks are fine- to medium-grained arkoses, with poorly sorted and subangular to subrounded grains. The detrital grains are cemented by quartz and minor calcite; besides, late iron oxide grain-coating cement occurs at the footwall unmineralized red-beds. The source area of the sediments, indicated by their modal composition, is an uplifted basement. The contents of SiO2 (40.70–87.50 wt.%), Al2O3 (5.91–22.00 wt.%), K2O (3.68–12.50 wt.%), Na2O (0.03–2.03 wt.%) and CaO (0.09–3.78 wt.%) are within the ranges expected for arkoses. Major oxide ratios indicate that the sedimentary-tectonic setting was a passive margin.The outcropping copper mineralization essentially consists in a supergene assemblage of chrysocolla, malachite and azurite. All that remains of the primary mineralization are micron-sized chalcocite grains shielded by quartz cement. In addition, pyrite subhedral grains occur scattered throughout the copper-mineralized horizons. In these weathered orebodies copper contents range between 4.24 and 7.72 wt.%, silver between 5 and 92 ppm, and cobalt from 8 to 91 ppm. Microthermometric measurements of fluid inclusions in quartz and calcite crystals from footwall barren veinlets gave temperatures of homogenization between 98 °C and 165 °C, and ice-melting temperatures between ?42.5 °C and ?26.1 °C.The primary copper mineralization formed during the early diagenesis, contemporary with the active life of the Sabinas Basin. The mineralizing fluids were dense, near neutral, moderately oxidized brines that originally formed from seawater that, driven by gravity, infiltrated to the deepest parts of the basin and dissolved evaporites. As a result, they became hydrothermal fluids of moderate temperature capable of leaching high amounts of copper. The source of this metal could be mafic detrital grains and iron oxides of the underlying Jurassic and Lower Cretaceous red-beds. Copper precipitation took place when the brines passed through the redox boundary marked by the transition from red- to grey-beds. The upward movement of the brines was promoted by a high heat flow that allowed their convective circulation and their ascent along the synsedimentary San Marcos Fault.  相似文献   

17.
The strongly peraluminous, perphosphorous (<0.85 wt% P2O5) and low-Ca granites from the Belvís de Monroy pluton contain the most U-rich monazite-(Ce) and xenotime known in igneous rocks. Along with these accessory minerals, P-rich zircon occurs, reaching uncommon compositions particularly in the more fractionated units of this zoned pluton. Monazite displays a wide compositional variation of UO2 (<23.13 wt%) and ThO2 (<19.58 wt%), positively correlated with Ca, Si, P, Y and REE. Xenotime shows a high UO2 content (2.37–13.34 wt%) with parallel increases of LREE, Ca and Si. Zircon contains comparatively much lower UO2 (<1.53 wt%) but high P2O5 (<14.91 wt%), Al2O3 (<6.96 wt%), FeO (<2.93 wt%) and CaO (<2.24 wt%) contents. The main mechanism of incorporating large U and Th amounts in studied monazite and U in xenotime is the cheralite-type [(Th,U)4+ + Ca2+ = 2(Y,REE)3+] substitution. Zircon requires several coupled mechanisms to charge balance the P substitution, resulting in non-stoichiometric compositions with low analytical totals. Compositional variations in the studied accessory phases indicate that the substitution mechanisms during crystal growth depend on the availability of non-formula elements. The strong P-rich character of the studied granites increases monazite crystallization, triggering a progressive impoverishment in Th and LREE in the residual melts, and consequently increasing extraordinarily the U content in monazite and xenotime. This is in marked contrast to other peraluminous (I-type or P-poor S-type) granite series. The P-rich and low-Ca peraluminous melt inhibits uraninite crystallization, so contributing to the U availability for monazite and xenotime.  相似文献   

18.
《Applied Geochemistry》1994,9(6):713-732
At the Nopal I uranium deposit, primary uraninite (nominally UO2+x) has altered almost completely to a suite of secondary uranyl minerals. The deposit is located in a Basin and Range horst composed of welded silicic tuff; uranium mineralization presently occurs in a chemically oxidizing and hydrologically unsaturated zone of the structural block. These characteristics are similar to those of the proposed U.S. high-level nuclear waste (HLW) repository at Yucca Mountain, Nevada. Petrographic analyses indicate that residual Nopal I uraninite is fine grained (5–10 μm) and has a low trace element content (average about 3 wt%). These characteristics compare well with spent nuclear fuel. The oxidation and formation of secondary minerals from the uraninite have occurred in an environment dominated by components common in host rocks of the Nopal I system (e.g. Si, Ca, K, Na and H2O) and also common to Yucca Mountain. In contrast, secondary phases in most other uranium deposits form from elements largely absent from spent fuel and from the Yucca Mountain environment (e.g. Pb, P and V). The oxidation of Nopal I uraninite and the sequence of alteration products, their intergrowths and morphologies are remarkably similar to those observed in reported corrosion experiments using spent fuel and unirradiated UO2 under conditions intended to approximate those anticipated for the proposed Yucca Mountain repository. The end products of these reported laboratory experiments and the natural alteration of Nopal I uraninite are dominated by uranophane [nominally Ca(UO2)2Si2O7·6H2O] with lesser amounts of soddyite [nominally (UO2)2SiO4·2H2O] and other uranyl minerals. These similarities in reaction product occurrence developed despite the differences in time and physical—chemical environment between Yucca Mountain-approximate laboratory experiments and Yucca Mountain-approximate uraninite alteration at Nopal I, suggesting that the results may reasonably represent phases likely to form during long-term alteration of spent fuel in a Yucca Mountain repository. From this analogy, it may be concluded that the likely compositional ranges of dominant spent fuel alteration phases in the Yucca Mountain environment may be relatively limited and may be insensitive to small variations in system conditions.  相似文献   

19.
The surface reactivity of biogenic, nanoparticulate UO2 with respect to sorption of aqueous Zn(II) and particle annealing is different from that of bulk uraninite because of the presence of surface-associated organic matter on the biogenic UO2. Synthesis of biogenic UO2 was accomplished by reduction of aqueous uranyl ions, by Shewanella putrefaciens CN32, and the resulting nanoparticles were washed using one of two protocols: (1) to remove surface-associated organic matter and soluble uranyl species (NAUO2), or (2) to remove only soluble uranyl species (BIUO2). A suite of bulk and surface characterization techniques was used to examine bulk and biogenic, nanoparticulate UO2 as a function of particle size and surface-associated organic matter. The N2-BET surface areas of the two biogenic UO2 samples following the washing procedures are 128.63 m2 g−1 (NAUO2) and 92.56 m2 g−1 (BIUO2), and the average particle sizes range from 5-10 nm based on TEM imaging. Electrophoretic mobility measurements indicate that the surface charge behavior of biogenic, nanoparticulate UO2 (both NAUO2 and BIUO2) over the pH range 3-9 is the same as that of bulk. The U LIII-edge EXAFS spectra for biogenic UO2 (both NAUO2 and BIUO2) were best fit with half the number of second-shell uranium neighbors compared to bulk uraninite, and no oxygen neighbors were detected beyond the first shell around U(IV) in the biogenic UO2. At pH 7, sorption of Zn(II) onto both bulk uraninite and biogenic, nanoparticulate UO2 is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. The maximum surface area-normalized Zn(II) sorption loadings for the three substrates were 3.00 ± 0.20 μmol m−2 UO2 (bulk uraninite), 2.34 ± 0.12 μmol m−2 UO2 (NAUO2), and 2.57 ± 0.10 μmol m−2 UO2 (BIUO2). Fits of Zn K-edge EXAFS spectra for biogenic, nanoparticulate UO2 indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations were observed at 2.8 ± 0.1 Å for NAUO2 and bulk uraninite; however, they were not observed for sample BIUO2. The derived Zn-U distance, coupled with an average Zn-O distance of 2.09 ± 0.02 Å, indicates that Zn(O,OH)6 sorbs as bidentate, edge-sharing complexes to UO8 polyhedra at the surface of NAUO2 nanoparticles and bulk uraninite, which is consistent with a Pauling bond-valence analysis. The absence of Zn-U pair correlations in sample BIUO2 suggests that Zn(II) binds preferentially to the organic matter coating rather than the UO2 surface. Surface-associated organic matter on the biogenic UO2 particles also inhibited particle annealing at 90 °C under anaerobic conditions. These results suggest that surface-associated organic matter decreases the reactivity of biogenic, nanoparticulate UO2 surfaces relative to aqueous Zn(II) and possibly other environmental contaminants.  相似文献   

20.
Geochemical and mineralogical investigations have been carried out on laterite profiles developed in the Lake Sonfon Au district of northern Sierra Leone. The area is underlain by Archean metavolcanics and constitutes part of the Sula Mountains greenstone belt, which is mineralized in Au. Extensive lateritization has affected the rocks of this region, resulting in a profile which from bottom to top consists typically of a decomposed bedrock zone, a pisolitic laterite layer and a duricrust layer. Both the pisolitic and duricrust layers of the laterite are sometimes punctuated by lenses of ironstones containing high amounts of Cu, Zn, Ni, Co and Ce. Gold occurs as small grains within the heavy mineral fraction recovered from the decomposed rock zones and pisolitic layers of the profiles and also in gravels of streams draining the area. The mineralogy of the duricrust and pisolitic layers is dominated by goethite, gibbsite and quartz, with minor amounts (<5% by volume) of ilmenite, magnetite, haematite, rutile and kaolinite. The kaolinite content increases towards the decomposed rock zone, where talc, vermiculite and other layer lattice silicates become abundant. The heavy-mineral fraction of stream sediments is composed essentially of ilmenite, magnetite, haematite, and traces of rutile, zircon, tourmaline and Au. The Au grains are often characterized by a 10–200-μm-wide rim having a much lower content of Ag (0.3 wt.% or lower) than the grain interior (about 5 wt.% on average). Dissolution effects are also observed on the grain surfaces. It is considered that Au derived from the amphibolite parent rock is dissolved, transported, and redeposited during laterization.The duricrust cover of the laterite profiles is characterized by high contents of Fe2O3 (ca. 60 wt.%) and Al2O3 (ca. 32wt.%) and low content of SiO2 (ca. 9 wt.%). In comparison, the pisolitic layer is higher in SiO2 (ca. 18 wt.%) as well as a slightly higher in Al2O3 (ca. 34 wt.%). Lateritic weathering has resulted in the removal of CaO, Na2O, MgO and SiO2, with relative enrichment of Fe2O3 and Al2O3. The geochemical distribution of the trace elements in the laterite profiles can be related to the occurrence of the auriferous mineralization. The significance of these observations is discussed in relation to the origin of the lateritic Au and the role of the associated trace elements as indicators of the mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号