首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A sequence of partial melting reactions at Mt Stafford, central Australia   总被引:8,自引:2,他引:6  
Metasedimentary gneisses show a rapid change in grade in a 10  km wide low- P /high- T  regional aureole at Mt Stafford in the Arunta Block, central Australia. Migmatite occurs in all but the lowermost of five metamorphic zones, which grade from greenschist (Zone 1) through amphibolite (Zones 2–3) to granulite facies (Zones 4–5). The sequence of partial melting reactions inferred for metapelitic rocks is dependant upon protolith, temperature and fluid conditions. The metapelite solidus in Zone 2 reflects vapour-present melting at P ≈3  kbar and T  ≈640  °C, melting having initially been controlled by the congruent breakdown of the assemblage Crd–Kfs–Bt–Qtz. At slightly higher temperature, andalusite in leucosome formed via the reaction Kfs+Qtz+Bt+H2O→And+melt; And+melt having been stabilized by the presence of boron. Sillimanite coaxially replaces andalusite in the high-grade portion of Zone 2. In Zone 3, large aluminosilicate aggregates in leucosome are armoured by Spl–Crd±Grt symplectites. Garnet partially pseudomorphs biotite, cordierite or spinel in high-grade portions of Zone 3. Zone 4 Grt–Crd–Opx-bearing metapsammite assemblages and garnet-bearing leucosome reflect T  ≈800  °C and P =2.2±0.9  kbar. In the model KFMASH system the principal vapour-absent melting step reflected significant modal changes related to the breakdown of the As–Bt tie-line and the establishment of the Spl–Crd tie-line; the bulk rock geochemistry of migmatite samples straddle the Spl–Crd tie-line. The aluminous bulk-rock composition of the common bedded migmatite restricted its potential to witness garnet-forming and orthopyroxene-forming reactions, minor textural and modal changes in and above Zone 3 reflecting biotite destablization in biotite-poor assemblages.  相似文献   

2.
Partial melting of metagreywacke: a calculated mineral equilibria study   总被引:2,自引:0,他引:2  
Greywacke occurs in most regionally metamorphosed orogenic terranes, with depositional ages from Archean to recent. It is commonly the dominant siliciclastic rock type, many times more abundant than pelite. Using calculated pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O system, the partial melting of metagreywacke is investigated using several natural protolith compositions that reflect the main observed compositional variations. At conditions appropriate for regional metamorphism at mid‐crustal depths (6–8 kbar), high‐T subsolidus assemblages are dominated by quartz, plagioclase and biotite with minor garnet, orthoamphibole, sillimanite, muscovite and/or K‐feldspar (±Fe–Ti oxides). Modelled solidus temperatures are dependent on bulk composition and vary from 640 to 690 °C. Assuming minimal melting at the H2O‐saturated solidus, initial prograde anatexis at temperatures up to ~800 °C is characterized by very low melt productivity. Significant melt production in commonly occurring (intermediate) metagreywacke compositions is controlled by the breakdown of biotite and production of orthopyroxene (±K‐feldspar) across multivariant fields until biotite is exhausted at 850–900 °C. Assuming some melt is retained in the source, then at temperatures beyond that of biotite stability, melt production occurs via the consumption of plagioclase, quartz and any remaining K‐feldspar as the melt becomes progressively more Ca‐rich and H2O‐undersaturated. Melt productivity with increasing temperature across the melting interval in metagreywacke is generally gradational when compared to metapelite, which is characterized by more step‐like melt production. Comparison of the calculated phase relations with experimental data shows good consistency once the latter are considered in terms of the variance of the equilibria involved. Calculations on the presumed protolith compositions of residual granulite facies metagreywacke from the Archean Ashuanipi subprovince (Quebec) show good agreement with observed phase relations. The degree of melt production and subsequent melt loss is consistent with the previously inferred petrogenesis based on geochemical mass balance. The results show that, for temperatures above 850 °C, metagreywacke is sufficiently fertile to produce large volumes of melt, the separation from source and ascent of which may result in large‐scale crustal differentiation if metagreywacke is abundant.  相似文献   

3.
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a?x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P?T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ~800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid‐absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward‐modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.  相似文献   

4.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

5.
K-feldspar–plagioclase–quartz mineral textures aswell as biotite and hornblende compositions are compared forsuites of metamorphosed mafic rocks from two widely separatedtraverses. A portion of either traverse has experienced a high-gradedehydration event transforming it from an H2O-rich, hornblende-bearingzone to an H2O-poor, hornblende-free, orthopyroxene-bearing,‘granulite facies’ zone at 700–800°C and7–8 kbar. In the Kigluaik Mountains, Seward Peninsula,Alaska, dehydration took place over an 85 cm thick layer ofmetatonalite in contact with a marble during regional metamorphismand involved a CO2-rich fluid, whereas for the Val Strona diOmegna traverse, Ivrea–Verbano Zone, northern Italy, dehydrationtook place over a 3–4 km thick sequence of metabasitesinterlayered with metapelites in a contact metamorphic eventinvolving basaltic magmas intruded at the base of the sequence.Orthopyroxene-bearing samples from both dehydration zones showmicro-veins of K-feldspar along quartz and plagioclase grainboundaries as well as replacement antiperthite in plagioclase.K came primarily from the breakdown of hornblende + quartz toorthopyroxene ± clinopyroxene, feldspar and fluid. Biotiteeither was stabilized or formed in the dehydration zones andis enriched in Ti, Mg, F and Cl relative to biotite in the amphibolitefacies zone. KEY WORDS: KCl–NaCl brines; metasomatism; granulite facies metamorphism; charnockite–enderbite; orthopyroxene; K-feldspar; biotite; hornblende  相似文献   

6.
Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones.  相似文献   

7.
The high-temperature and high-pressure experiment on natural block rock indicates that dehydration-melting of hydrous biotite (Bi) and partial melting of felsic minerals in garnet-biotite-plagioclase gneiss are mainly controlled by temperature, while mineral phase transformation is not only controlled by temperature-pressure conditions but also genetically associated with hydrous mineral dehydration-melting and partial melting of felsic minerals. According to the characteristics of biotite dehydration-melting and garnet transformation reaction, three stages may be distinguished: (1) when the experimental temperature is 700℃, biotite transforms to ilmenite (Ilm) + magnetite (Mt) + H2O and garnet to magnetite (Mt); (2) when the temperature is 730-760℃, biotite is dehydrated and melted and transformed into K2O-rich melt + Ilm + Mt, and garnet, into hypersthene (Hy) + cordierite (Crd); (3) when the temperature is up to or higher than 790℃, biotite is dehydrated and melted and transformed into melt + Hy +  相似文献   

8.
This study explores the origin and geochemical evolution ofapatite, monazite, and xenotime along two metamorphic traverses.The first, from the Kigluaik Mountains, Seward Peninsula, Alaska,consists of a localized (85 cm) orthopyroxene–clinopyroxene-bearingdehydration zone. The second consists of orthopyroxene ±clinopyroxene-bearing granulite facies metabasite layers interlayeredwith metapelites over a 3–4 km traverse, along the ValStrona, Ivrea–Verbano Zone, Northern Italy (IVZ). In bothdehydration zones small Th- and U-poor inclusions of monaziteand/or xenotime occur in the apatite. These inclusions are metasomaticallyinduced and nucleated within the apatite via the coupled substitutionsNa+ + (Y + REE)3+ = 2 Ca2+ and Si4+ + (Y + REE)3+ = P5+ + Ca2+.These are not present in apatite from the original amphibolitefacies gneiss. Apatite, in both dehydration zones, also showsa relative increase in both F and Cl compared with apatite fromthe amphibolite facies zone. Granulite facies metabasites inthe IVZ also contain isolated monazite grains, which range fromuniform to complexly zoned in Th the (13–30·1 mol% ThSiO4). These are the product of breakdown and subsequentmobilization of the lanthanides and actinides from monazite-(Ce)in the metapelite layers into the metabasite layers at the startof granulite facies metamorphism. KEY WORDS: apatite; monazite; xenotime; KCl–NaCl brines; metasomatism; phosphate minerals; charnockite–enderbite; granulite facies metamorphism  相似文献   

9.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

10.
Cordierite and orthopyroxene (or orthoamphibole) are widespread in migmatitic terranes, and partial melting of pelitic rocks may be important in their production. In particular, the reaction quartz +albite+biotite+garnet+water vapor = cordierite +orthopyroxene or orthoamphibole+melt was among reactions discussed by Grant (1973) but poorly constrained in pressure-temperature space.This reaction involves too many phases to be readily studied experimentally. Therefore simpler melting and dehydration reactions involving quartzalbite-biotite-cordierite-orthopyroxene were investigated.In conjunction with the work of Hoffer (1976, 1978) these experiments place useful constraints on the above reaction and on the reaction quartz+albite+aluminosilicate+biotite+vapor = cordierite+garnet+melt. In pelitic rocks near the second illimanite isograd, cordierite and garnet may coexist with melt as low as 660° C and cordierite and orthopyroxene may coexist with melt at temperatures less than 675° C. In the absence of significant Mn or Ca, in pelitic rocks within the realm of melting, biotite+garnet assemblages are probably limited to pressures greater than 2kb and aluminosilicate+biotite assemblages to pressures greater than 3kb.  相似文献   

11.
On the Initiation of Metamorphic Sulfide Anatexis   总被引:3,自引:0,他引:3  
Mineral assemblages in common sulfide ore deposits are examinedtogether with phase relations to (1) investigate the pressure–temperatureconditions required for the onset of metamorphically inducedpartial melting involving economic minerals, and (2) place constraintson the amount of melt produced. Deposits that contain sulfosaltor telluride minerals may start to melt at conditions rangingfrom lowest greenschist facies to amphibolite facies. Depositslacking sulfosalt and/or telluride minerals may begin to meltonce P–T conditions reach the upper amphibolite facies,if galena is present, or well into the granulite facies if galenais absent. The result is two broad melting domains: a low- tomedium-temperature, low melt volume domain involving meltingof volumetrically minor sulfosalt and/or telluride minerals;and a high-temperature, potentially higher melt volume domaininvolving partial melting of the major sulfide minerals. Epithermalgold deposits, which are especially rich in sulfosalt minerals,are predicted to commence melting at the lowest temperaturesof all sulfide deposit types. Massive Pb–Zn (–Cu)deposits may start to melt in the lower to middle amphibolitefacies if pyrite and arsenopyrite coexist at these conditions,and in the upper amphibolite facies if they do not. Exceptingsulfosalt-bearing occurrences, massive Ni–Cu–PGE(platinum group element) deposits will show little to no meltingunder common crustal metamorphic conditions, whereas disseminatedCu deposits are typically incapable of generating melt untilthe granulite facies is reached, when partial melting commencesin bornite-bearing rocks. The volume of polymetallic melt thatcan be generated in most deposit types is therefore largelya function of the abundance of sulfosalt minerals. Even at granulite-faciesconditions, this volume is usually less than 0·5%. Theexception is massive Pb–Zn deposits, where melt volumessignificantly exceeding 0·5 vol. % may be segregatedinto sulfide magma dykes, allowing mobilization over large distances. KEY WORDS: sulfide melt; ore deposits; melt migration; metamorphism  相似文献   

12.
The recent development of activity–composition relations for mineral and melt phases in high‐grade metamafic rocks allows mineral equilibria tools to be used to further aid our understanding of partial melting and the mineralogical consequences of melt segregation in these rocks. We show that bulk compositional data from natural amphibolites cover a wide compositional range, with particular variability in the content and ratios of Ca, Na and K indicating that low‐grade metasomatic alteration can substantially alter the igneous protolith chemistry and potentially affect the volume and composition of melt generated. Mineral equilibria calculations for five samples that span the compositional variability in our data set indicate that melting occurs primarily via the fluid‐absent breakdown of amphibole+quartz to produce a pressure‐sensitive peritectic assemblage of augite, orthopyroxene and/or garnet. The introduction of orthopyroxene at the onset of the amphibolite‐to‐granulite‐facies transition at lower pressure results in an increased rate of melt production until quartz is typically exhausted, and this is similarly seen for the introduction of garnet at higher pressure. Calculated melt compositions are dependent on the protolith composition, but initial solidus melting and biotite breakdown produce 1–3 mol.% of K‐rich granitic melts. As hornblende melting proceeds, 15–20 vol.% of either more granodioritic‐to‐tonalitic or granodioritic‐to‐trondhjemitic melt is produced. Once quartz is exhausted, intermediate to mafic melt compositions are produced at ultrahigh‐temperature conditions. Quartz‐rich lithologies with high Ca coupled to low Na and K are the most fertile under orogenic conditions, yielding up to 25 mol.% of sub‐alkalic granitic melt by 850°C. Such rocks did not experience significant subsolidus alteration. Altered compositions with low Ca and elevated Na and K are not as fertile, yielding less than 15 mol.% of alkalic granitic melt by 850°C. These melt volumes are enough to be segregated, and can make a contribution to granite magmatism and intracrustal differentiation that should not be overlooked.  相似文献   

13.
A high-grade Archaean gneiss terrane in the northern Gallatin Range, south-western Montana, USA, contains a trondhjemite–tonalite gneiss (TTG) sequence that was migmatized during pervasive ductile shearing. Metamorphism of these rocks is in the upper amphibolite to granulite facies at temperatures of 680–735°C, pressures in excess of 8 kbar, and a 'clockwise' P–T–t path is inferred. Ductile shearing occurred in metre-scale anastomosing bands of high strain throughout the area. The TTGs have been extensively migmatized via vapour-present melt reactions involving the incongruent melting of biotite-bearing TTG to produce hornblende and granitic melt. The granitic melt is produced in narrow envelopes adjacent to ductile shear zones in response to infiltration of water-rich solutions. Melt migration occurred on a local scale, and extraction of melt from the system left behind a plagioclase–hornblende residuum with minor interstitial microcline. Ductile shearing and migmatization in the TTG operated in a positive feedback mechanism; the entire volume of gneiss was chemically and mechanically reworked through the cyclical infiltration of aqueous solutions, vapour-present melting and melt-enhanced deformation. The proposed melt reaction may be an important crustal differentiation process considering that (1) many collisional orogens do not attain temperatures high enough to permit vapour-absent melting, (2) pervasive networks of ductile shear zones at mid-crustal levels may serve as channels for fluid ingress and melt extraction, and (3) the large volumes of TTGs in Archaean and Phanerozoic orogens may constitute a significant source reservoir for certain types of high-level granites.  相似文献   

14.
The Main Zone of the Hidaka metamorphic belt is an imbricate stack of crustal material derived from an island arc in which a sequence of units with increasing metamorphic grade from low to high structural levels is exposed. The basal part of the metamorphic sequence underwent granulite facies metamorphism with peak P–T conditions of 7kbar, 870°C. In this zone pelitic granulite includes leucosomes which consist mainly of orthopyroxene-plagioclase-quartz.
To test whether the leucosome was derived by partial melting of the surrounding pelite, melting experiments of the pelitic granulite were carried out for water-saturated and dry systems at 7 kbar and 850°C. The chemical composition of the leucosome produced during these runs shows a peraluminous S-type tonalitic affinity and is located very close to the tie-line between the average melts produced in water-saturated systems and the average composition of the residual orthopyroxene + plagioclase. This therefore suggests that the lecosome in pelitic granulite was formed by incipient anatexis at close to the highest P–T condition of the Main Zone.
The age of the crustal anatexis is determined by the Rb-Sr whole rock isochron method for garnet-cordierite-biotite gneiss (host rock), garnet-orthopyroxene-cordierite gneiss (restite) and S-type tonalite (melt). This gives an age of 56.0 Ma with an initial 87Sr/86Sr ratio of 0.705711. The S-type tonalite magmas that form large intrusive masses in the Main Zone were probably generated by crustal anatexis in deeper parts of the crust at the same time (late Palaeocene).  相似文献   

15.
To understand the petrogenesis of peraluminous granites syntectonicto the Dorsal de Canguçu Transcurrent Shear Zone in theSul-rio-grandense Shield, Brazil, melting experiments were performedon one of the potential protoliths, a cordierite-bearing semi-peliticmetasedimentary gneiss (PE-1). Experiments were conducted atpressures of 5, 10 and 15 kbar, at temperatures of 700–900°C,and under fluid-absent and 5% H2O-present conditions. The experimentsshow that fluid-absent melting begins at near-solidus conditions,around 700°C, promoted by participation of retrogressivephengitic muscovite in the reaction Mus + Kf ± Qz = melt± Fe–Ti oxide ± Als, producing a very smallamount of melt (<9%) with widely ranging composition. Allhypersolidus experiments (>800°C) produced S-type graniticmelts promoted by participation of biotite or cordierite inthe reactions Bio + Pl + Crd + Qz = Px + Fe–Ti oxide +melt at 5 kbar, and Bio + Pl + Crd ± Qz = Grt + Als ±Kf + melt at 10 and 15 kbar, both producing a high amount ofmelt (10–63% by volume). The melt compositions obtainedat 900°C and 15 kbar under fluid-absent conditions, promotedby biotite or cordierite breakdown, are similar to the syntectonicgranites. However, it is unlikely that the granites were formedat this pressure (corresponding to a depth of melting of  相似文献   

16.
Biotite + plagioclase + quartz (BPQ) is a common assemblagein gneisses, metasediments and metamorphosed granitic to granodioriticintrusions. Melting experiments on an assemblage consistingof 24 vol. % quartz, 25 vol. % biotite (XMg = 0·38–0·40),42 vol. % plagioclase (An26–29), 9 vol. % alkali feldsparand minor apatite, titanite and epidote were conducted at 10,15 and 20 kbar between 800 and 900°C under fluid-absentconditions and with small amounts (2 and 4 wt %) of water addedto the system. At 10 kbar when 4 wt % of water was added tothe system the biotite melting reaction occurred below 800°Cand produced garnet + amphibole + melt. At 15 kbar the meltingreaction produced garnet + amphibole + melt with 2 wt % addedwater. At 20 kbar the amphibole occurred only at high temperature(900°C) and with 4 wt % added water. In this last case themelting reaction produced amphibole + clinopyroxene ±garnet + melt. Under fluid-absent conditions the melting reactionproduced garnet + plagioclase II + melt and left behind a plagioclaseI ± quartz residuum, with an increase in the modal amountof garnet with increasing pressure. The results show that itis not possible to generate hornblende in such compositionswithout the addition of at least 2–4 wt % H2O. This reflectsthe fact that conditions of low aH2O may prevent hornblendefrom being produced with peraluminous granitic liquids fromthe melting of biotite gneiss. Thus growth of hornblende inanatectic BPQ gneisses is an indication of addition of externalH2O-rich fluids during the partial melting event. KEY WORDS: biotite; dehydration; gneisses; hornblende; melt  相似文献   

17.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

18.
Metapelitic migmatites at Brattstrand Bluffs, East Antarctica,preserve granulite assemblages and a complex deformational history.Crystallized granitic melt accounts for 25% of exposed rocks,and was produced by biotite dehydration-melting reactions inthe host metapelite. Variable degrees of melt production andextraction resulted in a range of bulk compositions in the residualmetapelite, from quartz-rich migmatites to restitic quartz-absentpelite. Decompressional reaction textures indicate 11 km ofexhumation after peak metamorphism at P—T conditions of6 kbar and 860C Decompression occurred during a single cycleof partial melting and melt crystallization at 500 Ma, and wassynchronous with tectonic unroofing of the Brattstrand Bluffsmigmatites along ductile shear zones. Exhumation has been proposedas a cause of dehydration melting in the Himalaya and elsewhere,but melting at Brattstrand Bluffs was ultimately driven by thetectonic perturbation and subsequent thermal relaxation responsiblefor high metamorphic temperatures. Exhumation did not drivemelting reactions, but it is likely that the presence of meltfocused deformation in the migmatites and thus promoted exhumation. KEY WORDS: decompression; exhumation; granulite; melting; migmalite *Corresponding author.  相似文献   

19.
Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.  相似文献   

20.
Peraluminous granitoid magmas are a characteristic product of ultrametamorphism leading to anatexis of aluminous metasedimentary rocks in the continental crust. The mechanisms and characteristic length-scales over which these magmas can be mobilized depend strongly on their melt fraction, because of their high viscosities. Thus, it is of fundamental importance to understand the controls exerted by pressure, temperature and bulk composition of the source material on melt productivity. We have studied experimentally the vapour-absent melting behaviour of a natural metapelitic rock and our results differ greatly from those of previous experimental and theoretical investigations of melt productivity from metamorphic rocks. Under H2O-undersaturated conditions, bulk composition of the source material is the overriding factor controlling melt fraction at temperatures on the order of 850–900° C. Granitoid melts formed in this temperature interval by the peritectic dehydration-melting reaction: $$\begin{gathered} Biotite + plagioclase + aluminosilicate + quartz \hfill \\ = melt + garnet \hfill \\ \end{gathered} $$ have a restricted compositional range. As a consequence, melt fractions will be maximized from protoliths whose modes coincide with the stoichiometry of the melting reaction. This “optimum mode” (approximately 38% biotite, 32% quartz, 22% plagioclase and 8% aluminosilicate) reflects the fact that generation of low-temperature granitoid liquids requires both fusible quartzo-feldspathic components and H2O (from hydrous minerals). Metapelitic rocks rich in mica and aluminosilicate and poor in plagioclase contain an excess of refractory material (Al2O3, FeO, MgO) with low solubility in low-temperature silicic melts, and will therefore be poor magma sources. Melt fraction varies inversely with pressure in the range 7–13 kbar, but the effect is not strong: the decrease (at constant temperature) over this pressure range is of at most 15 vol% (absolute). The liquids produced in our experiments are silicarich (68–73 wt% SiO2), strongly peraluminous (2–5 wt% normative corundum) and very felsic (MgO+FeO* +TiO2 less than 3 wt%, even at temperatures above 1000° C). The last observation suggests that peraluminous granitoids with more than 10% mafic minerals (biotite, cordierite, garnet) contain some entrained restite. Furthermore, because liquids are also remarkably constant in composition, we believe that restite separation is more important than fractional crystallization in controlling the variability within and among peraluminous granitoids. We present liquidus phase diagrams that allow us to follow the phase relationships of melting of silica-and alumina-saturated rocks at pressures corresponding to the mid- to deep-continental crust. Garnet, aluminosilicate, quartz and ilmenite are the predominant restitic phases at temperatures of about 900° C, but Ti-rich biotite or calcic plagioclase can also be present, depending on the bulk composition of the protolith. At temperatures above 950–1050° C (depending on the pressure) the restitic assemblage is: hercynitic spinel+ilmenite+quartz±aluminosilicate. Our results therefore support the concept that aluminous granulites (garnet-spinel-plagioclase-aluminosilicate-quartz) can be the refractory residuum of anatectic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号