首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
顾晓强  杨峻  黄茂松  高广运 《岩土力学》2015,36(Z1):220-224
利用安装在共振柱测试系统中的弯曲-伸展元,开展了干砂中P波(压缩波)和S波(剪切波)的室内试验,详细地分析了干砂中P波和S波的信号特征,研究了输入频率、土体密实度和有效围压对输出信号的影响。对比各种信号分析方法,并参考共振柱试验结果确定了S波的传播时间。根据实测波速和波动理论,确定了土体的弹性参数,包括剪切模量,侧限模量和泊松比。研究结果表明,P波和S波的输出信号频率在一定程度上随输入信号频率、土体密实度和有效围压的增加而增加,且P波信号比S波信号更容易确定波的传播时间;土体的弹性模量随土体密实度和有效围压的增加而增加,但剪切模量增长比侧限模量快;土体的泊松比并非一个常数,随着土体密实度和有效围压的增加而下降。初步探讨了利用剪切模量估算泊松比,以方便实际工程应用。  相似文献   

2.
基于多重互相关函数分析剪切波速   总被引:1,自引:0,他引:1  
何先龙  赵立珍 《岩土力学》2010,31(8):2541-2545
介绍了一种提高单孔法剪切波速测量精度的新方法-多重互相关函数法。考虑到判断场地剪切波到时差的困难,提出了用多重互相关函数来求得两剪切波的到时差。互相关分析可求取两相似信号的到时差,但当两信号相似性比较差时,所求得到时差的误差较大;自相关函数本身可进行多重自相关分析,互相关函数结合多重自相关函数后,也可以进行多重互相关分析来求取两相似信号的到时差。试验表明:相比互相关函数,多重互相关函数可改善触发信号和井中三分向探头输出信号的相似性及更好地抑制噪声,因此能更精确地计算出触发信号和井中三分向探头输出信号的的到时差。基于此原理设计了剪切波波速的测试系统,此系统能自动分析出测点的剪切波速和形成完整的报告。  相似文献   

3.
用GDS弯曲-伸展元系统对不同含水率的低液限黏土进行波速试验,根据波动理论测得黏土的剪切模量、侧限模量和泊松比,研究不同含水率、不同试验有效围压、不同信号输入频率对试验结果的影响,并对S波(剪切波)与P波(压缩波)的输出波型信号特征进行分析,将不同信号分析方法所测得结果与共振柱结果进行对比。试验结果表明,(1)在低液限黏土中的剪切波速V_s、压缩波速V_p均随输入频率增大而增大,且增幅随频率增加而减小;在黏土材料中S波的近场效应随含水率和激发频率的提高而减弱;(2)剪切模量G_0和侧限模量M_0均随试验围压的增大而提高,G_0随试样含水率的提高而降低;(3)泊松比随含水率的提高而增大,且随着含水率的增大试验围压对泊松比的影响减弱。  相似文献   

4.
弯曲元是测试土体小应变动力学参数的常用手段,然而在使用弯曲元测试时,波形、频率、峰值和试样的尺寸对波在土体中传播时间的确定会造成一定的影响。目前大多从输入波的频率方面来研究其对输出信号传播时间确定的影响,但对输入波峰值、输入波形对输出信号的影响研究较少。基于此,采用弯曲元对干燥福建标准砂的小应变动力学参数进行了研究,分析了输入频率、输入波峰值、输入波形对输出信号的影响,以及土体相对密度和有效围压对侧线模量、剪切模量和泊松比的影响。结果表明:输入频率对S波(剪切波)的传播时间有明显影响,对P波(压缩波)基本没有影响;输入波峰值的大小对判别S波或P波的传播时间没有影响;输入波形对S波或P波的传播时间有显著的影响;土体的侧线模量、剪切模量和泊松比均随有效围压和孔隙比的增大呈指数形式变化。根据Hardin提出的小应变模量预测模型,拟合出了考虑有效围压和孔隙比耦合作用下的三维模型公式,可为实际工程中对侧线模量、剪切模量和泊松比的估算提供一定参考。  相似文献   

5.
研究深土冻融过程的声波响应特性,对于声波技术应用于深厚表土层人工冻结工程有重要意义。深土原位冻融始终处于高地应力环境下,但目前声波测试装置尚不具备高压冻融条件下的测试功能。为此本文结合弯曲元测试技术,研制了侧装式弯曲元高压冻融试验装置,以了解高应力条件下深土冻融过程的剪切波速。该试验装置主要由试样承压舱、加载系统、控温系统、数据采集系统和弯曲元测试系统构成。系统核心单元——试样承压舱采用双层筒结构,内筒为聚四氟乙烯筒,外筒为钢筒,弯曲元探头设置于内层筒侧壁。通过数值计算确定内筒壁厚8mm,外筒壁厚15mm,该结构可满足高应力下承压舱的抗变形、隔热和隔振要求。利用弯曲元测试系统研究了声波走时确定方法,以及激励波形和频率等测试参数。根据测试结果,本试验条件下声波走时采用初达波法确定,激励波形采用方波,高密度冻土和未冻土的激励频率分别选择4kHz和5kHz。最后,利用该装置测试了有载条件下深部黏土不同负温下的剪切波速,初步验证了装置的适用性。  相似文献   

6.
提出了一种提高单孔法剪切波速测量精度的新方法--能量变化率的自回归曲线法。首先把剪切波的时程曲线变换为能量变化率时程曲线;然后对能量变化率时程曲线进行长短平均处理,拾取各测点P波和S波的大致初至;最后提出采用一种二次方自回归模型对初至附近的能量变化率曲线进行二次方自回归处理,精确拾取出各测点P波和S波的精确到时。采用此方法、互相关函数法和人工拾取法对某场地的剪切波速进行了对比分析。分析结果表明:此方法相比互相关函数法,具有更好的噪声抑制能力,不仅能精确地自动拾取出各测点的S波的到时差,也能更准确地自动拾取出各测点的P波的到时差。以人工拾取结果为参考,此方法在实际测试中具有很高的准确率和稳定性。此方法丰富了场地剪切波速分析方法。基于此方法、互相关函数法和人工拾取法,设计了一套剪切波波速的测试系统,此系统能自动分析出各测点的剪切波速和形成完整的报告。  相似文献   

7.
橡胶砂作为一种廉价环保的土工材料,应用前景十分广阔,关于其力学特性的研究具有重要意义。采用弯曲–伸缩元法对橡胶砂进行了剪切波和压缩波联合测试,分别采用离散频率扫描法和初达波法确定了剪切波和压缩波的传播时间,进而得到其弹性动力学参数:初始剪切模量、侧限模量和泊松比,分析了橡胶含量和围压对橡胶砂弹性动力学参数的影响。结果表明:在同样围压下,随着橡胶含量的增加,橡胶砂初始剪切模量和侧限模量逐渐减小,初始泊松比逐渐增大;在同样橡胶含量下,随着围压的增大,橡胶砂初始剪切模量和侧限模量逐渐增大,初始泊松比逐渐减小。最后,在此基础上进行了两种因素耦合效应的分析以及相关力学机制的探讨。  相似文献   

8.
土的剪切波速是岩土工程领域的一个重要参数。建筑场地类别划分、地基饱和砂土液化判别、地震反应分析等都依赖于剪切波速,由于其重要性,对它的测定技术和精确程度应重点研究。针对工程中广泛采用的单孔法剪切波速测试,提出了一种基于互相关函数计算土层剪切波速的优化算法。克服了传统数据处理方法中经常遇到的负波速、波速数值明显过大或过小和同一土层各测点波速差别较大等4种不合理因素,提高了数据分析的精度和效率。  相似文献   

9.
陈国兴  李磊  丁杰发  赵凯 《岩土力学》2020,41(9):3056-3065
地震基岩深度和土体动力本构模型的选取对核岛场地地震效应评价结果的合理性具有重要影响。以拟建某沿海核电厂深度470 m沉积土夹火山岩层场地的3个钻孔剖面为研究对象,采用一维等效线性波传分析(ELA)法、基于Matasovic本构模型和Davidenkov-Chen-Zhao(DCZ)本构模型的一维非线性分析(NLA)法,选取不同剪切波速的5个岩土层作为地震基岩,研究了输入地震动特性、地震基岩深度和土体动力本构模型的选取对巨厚沉积土夹火山岩层场地非线性地震反应特性的影响。结果表明:(1)以浅层硬岩夹层或深部土层作为地震基岩,NLA法计算的5%阻尼比的地表谱加速度SA的短周期部分较之ELA法的计算值大,但两者计算的地表SA谱的长周期部分几乎一致;(2)基于Matasovic模型和DCZ模型的NLA法计算的地表SA谱谱形和峰值加速度随深度的变化趋势基本一致;(3)从NLA法计算的地表峰值加速度和累积绝对速度而言,以剪切波速约2 500 m/s的浅层硬岩夹层作为地震基岩是适宜的。  相似文献   

10.
苏杰  周正华  李小军  董青  李玉萍  陈柳 《岩土力学》2020,41(4):1420-1428
基于偏振特征的剪切波到时判别在下孔法波速测试中被广泛应用,然而实际测试中时有发现压缩波初动出现反相的现象,因此针对压缩波不偏振而剪切波偏振的理论基础进行论证很有必要。通过三维有限元分析模型模拟了地表敲击下孔法波速测试,并基于时域逐步积分动力有限元方法求解了地表正反向水平敲击下不同深度观测点振动响应。结果表明:地表水平正反向激励下,各深度观测点中与激励方向平行的水平分量中压缩波也出现反相。为进一步探讨这与实际工程的认知相悖的现象,数值模拟了荷载倾斜、探头旋转、探头倾斜等实际测试可能出现的情形。结果显示:荷载倾斜与探头倾斜的综合影响会导致正反向敲击激励下压缩波的初动相位不反相。进一步,提出了一种剪切波旅时计算新方法以减少每次敲击之间敲击角度、探头偏转和倾斜变化带来的影响,数值计算得到基于新方法求解的剪切波速接近模型介质剪切波速值,其优于利用峰-峰法和互相关法确定旅时而得到的波速结果。  相似文献   

11.
Bender element test setups have gained much popularity in the measurement of shear wave velocity (vs) in soil specimens, with the purpose of estimating the small strain shear modulus (Go). However the determination of shear wave arrival time from bender element tests can be subjective with results varying over a wide range, depending on the method adopted to identify the arrival time. This paper describes a series of bender element tests conducted on a pair of unconfined specimens, 38 mm in diameter and 76 mm in height, where the average data of the two are reported. With shear waves triggered at frequencies between 1 and 20 kHz, identification of the arrival time in both the time and frequency domains were performed. The different methods presented varying degrees of problems and discrepancies, with no one method emerging as a consistent winner. The time domain methods were apparently preferable due to its simplicity, which is perhaps one of the key factors contributing to the growing popularity of bender elements. The frequency domain methods, on the other hand, involved complex manipulation of the original signals, which can be onerous and time-consuming. Based on the findings, it was concluded that the reliability of shear wave velocity measurement with bender elements can be increased and the errors kept to a minimum, if the same arrival time identification method is performed with consistent judgment in a particular test series.  相似文献   

12.
Bender elements are shear wave transducers, widely used for the experimental identification of the small-strain shear moduli of geomaterials. They offer good coupling with the sample and controllable loading signal and frequency, but some of their design and signal interpretation features are still under investigation. The research of these features has been approached mainly on experimental grounds and, in most cases, the conclusions were not consensual. This study aims at laying the foundations for a coupled, numerical–experimental approach to the problem. It uses hybrid-Trefftz finite elements to model the bender element test and the output signal obtained in the laboratory to validate the model.Two main reasons justify the choice of the hybrid-Trefftz finite elements. First, hybrid-Trefftz elements are considerably less wavelength-sensitive than conforming displacement elements. This feature endorses the use of the same (coarse) mesh for modelling waves of very different types and frequencies, thus eliminating the need for time-consuming mesh refinements. Second, hybrid-Trefftz elements use physically meaningful approximation bases. This feature enables the numerical filtration of the spurious compression waves propagating laterally from the emitter and of their reflections from the envelope of the sample. Hybrid-Trefftz finite elements are shown to recover adequately the output signal obtained experimentally, for pulse excitations of various frequencies and two sets of boundary conditions. The decomposition of the output signal into its shear and compression components endorses the clear identification of the shear wave arrival and the amount of compression wave pollution.  相似文献   

13.
The characteristics of hydrocarbon-contaminated soils have been among major concerns of geotechnical engineers due to its significant frequency of event and also its influential consequences on our surroundings from various environmental and engineering viewpoints. Heretofore, the effects of diverse kinds of hydrocarbon contaminants on majority of geotechnical properties of fine- and coarse-grained soils such as grain size, hydraulic conductivity, plasticity, compressibility, internal friction, cohesion, and shear strength have been investigated. However, there has not been a concentrated research study examining shear wave velocity (\({\text{V}}_{\text{s}}\)) of hydrocarbon-contaminated soils as an important geotechnical property of soil due to this fact that, in small/very small strain levels, the maximum shear modulus of soils (\({\text{G}}_{ \hbox{max} }\)) can be determined using shear wave velocity (\({\text{G}}_{ \hbox{max} } =\uprho{\text{V}}_{\text{s}}^{2}\)). This paper aims to investigate effects of hydrocarbon contamination on shear wave velocity of sandy soils by comparing shear wave velocities in identically prepared clean and contaminated samples. To this aim, an Iranian light crude oil, a standard type of silica sand (Ottawa sand), and a bender element apparatus were used to minutely measure shear wave velocity of clean and crude oil contaminated sand samples. Moreover, dry and quasi-moist tamping methods were employed in order to provide comparable clean and contaminated specimens (containing 4, 6, 8, 10, and 12 wt% of crude oil), respectively. Firstly, a comprehensive bender element (BE) and resonant column tests were conducted on the identically prepared clean sand samples at various amounts of frequency (2–20 kHz) and under various confining pressure (50–500 kPa) to find the best methods of accurately determining shear wave travel time in BE tests. Thereafter, BE tests were conducted to examine shear wave velocity in contaminated specimens. Based on the results, it was found that there was a critical value for crude oil content with the maximum shear wave velocity so that shear wave velocity of 4 wt% contaminated sand (Vs-4 wt%) was about 1.2 times higher than clean one (Vs-clean), and contrastingly adding further crude oil up to 6 wt% made a significant reduction in value of shear wave velocity to some extent that Vs-6 wt% was slightly lower than Vs-clean (Vs-6 wt% = 0.95–0.97Vs-clean). Moreover, adding more contaminant (8–12 wt%) into sand had negligible influences on shear wave velocity. In this paper, the effects of crude oil contamination on sand microstructure were also evaluated using scanning electron microscopy.  相似文献   

14.
Shear wave velocity is a fundamental property of a granular assembly. It is a measure of the true elastic stiffness of a bulk specimen of discrete grains. Shear wave velocity is typically measured in the laboratory (e.g., using bender elements) or in-situ (e.g., using a seismic cone penetrometer, sCPT). In the current work, shear wave propagation is modeled numerically using the discrete element method (DEM). First, an appropriate method for measuring wave velocity is identified. Then the effects of particle size and elastic properties are investigated. Specimen fabric is then quantified before and after wave excitation and the elasticity of the response at the scale of the particle contacts is investigated. The results show that shear wave velocity may be robustly measured for discrete numerical specimens. The ability to measure shear wave velocity using DEM simulations may provide another tool for researchers seeking to link results from physical and numerical experiments.  相似文献   

15.
Modelling of failure under dynamic conditions in geomaterials with finite elements presents a series of complex problems, among which we can mention those of (i) volumetric locking, which results on higher failure loads, (ii) influence of mesh alignment, resulting to unrealistic failure surfaces, (iii) diffusion of the shear band over some element widths, (iv) nonoptimal propagation properties (numerical diffusion and dispersion), (v) fulfilling Babuska–Brezzi conditions when using the same order of interpolation for displacement and pressures in coupled problems and (vi) large deformation analysis. This paper is based on previous work done by the authors, who developed a mixed approximation based on (i) casting the dynamic problem in the form of a system of first order PDEs and (ii) using stresses and velocities as nodal variables. The equations were discretized following a Taylor–Galerkin algorithm, first in time using a Taylor expansion and then in space using Galerkin method. The model was limited to small deformations. The purpose of this paper is to show how Taylor–Galerkin method can be extended to meshless formulations, such as the SPH method. The algorithm consists of (i) discretizing in time using a Taylor series expansion complemented with integration of source terms using a Runge–Kutta scheme and then (ii) discretizing in space using the SPH method. It is shown how the proposed method keeps the advantages of the Taylor–Galerkin method in Finite Elements (good propagation properties and capturing of shear bands) and avoids the tensile instability. A set of test problems ranging from elastic propagation of a wave in a bar to failure of a slope on a cohesive softening material are used to assess the performance of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号