首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present measurements of the distribution of the OH masers at 1665 and 1667 MHz towards the cometary ultracompact H  ii region in the complex G34.3+0.2. The results are based on observations made in both senses of circular polarization with a very long baseline interferometry (VLBI) array having an angular resolution of 5×20 mas2. 38 maser features are identified in the region. 33 of these lie on an arc at the edge of the cometary H  ii region. Five are located in a cluster offset toward the north-east by 3 arcsec, and are probably associated with an independent ultracompact H  ii region. There is a velocity gradient of 30 km s−1 pc−1 across the arc. We identify five Zeeman pairs and determine that the magnetic field varies between 1 and 7 mG, but is always directed away from the Earth.
The OH masers may arise in clumps in a shell of gas in a bow shock caused by the motion of the exciting star through the molecular cloud. The stand-off distance and the thickness of the shocked shell are roughly consistent with those predicted by such a bow-shock model. Also, the position of the exciting star(s), as estimated from the focus of the parabolic bow shock, closely matches that of the peak emission from the cometary H  ii region. However, the north–south velocity gradient in the ionized material remains difficult to explain in the context of the bow-shock model.  相似文献   

2.
We study the multi-waveband non-thermal emission from the pulsar wind neb- ulae (PWNe) Vela X and G0.9 + 0.1 in the frame of a time-dependent model describing non-thermal radiation from the PWNe. In such a model, the relativistic wind of parti- cles driven by a central pulsar blows into the ambient medium and creates a termination shock that accelerates the particles to very high energy in a PWN. The non-thermal pho-tons in the PWN are produced both by synchrotron radiation and the inverse Compton process, with electrons coming directly from the pulsar magnetosphere and electrons be- ing accelerated at the termination shock. We apply this model to reproduce the observed multi-waveband photon spectra of Vela X and the G0.9+0.1, both of which have been detected emitting very high energy photons. Our results indicate that TeV photons are produced by the inverse Compton scattering of the high-energy electrons in the infrared photon field in both Vela X and PWN G0.9+0.1. The TeV photons from these two PWNe may have leptonic origins.  相似文献   

3.
We report hard X-ray emission of the non-thermal supernova remnant G337.2+0.1. The source presents centrally filled and diffuse X-ray emission. A spectral study confirms that the column density of the central part of the object is about N H∼5.9(±1.5)×1022 cm−2 and its X-ray spectrum is well represented by a single power-law with a photon index Γ=0.96±0.56. Detailed spectral analysis indicates that the outer region is highly absorbed and quite softer than the inner region. Characteristics already observed in other well-known X-ray plerions. Based on the gathered information, we confirm the SNR nature of G337.2+0.1, and suggest that the central region of the source is a pulsar wind nebula (PWN), originated by an energetic though yet undetected pulsar.  相似文献   

4.
吴凌翔  杨戟 《天文学报》2005,46(2):136-144
对MSX红外暗云G79.2+0.38的11'×7'的区域范围进行了12CO(1-0)、13CO(1-0)和C18O(1-0)谱线的同时观测.观测到的两个C18O(1-0)谱线所界定的云核峰值分布分别对应MSX A波段的两块高消光区域.该区域的氢分子柱密度N(H2)-(5-12)×1022 cm-2,平均密度n-(3±1)×104cm-3.两块分子云核的13CO的线尺度分别是1.7和1.2 pc,而C18O的线尺度分别是1.2和0.6 pc,它们包含的质量为2×102-2×103M(?).分子云核的视向平均密度结构可用幂函数(?)(p)-p-0.34±0.02表征. 13CO和C18O的丰度和典型的光学暗云相比低了4至11倍,但是目前还没有证据表明13CO和C18O的相对丰度比X13/18随柱密度有显著变化.  相似文献   

5.
We present evidence for interaction between the supernova remnant (SNR) G357.7+0.3 and nearby molecular clouds, leading to the formation of wind-swept structures and bright emission rims. These features are not observed at visual wavelengths, but are clearly visible in mid-infrared mapping undertaken using the Spitzer Space Telescope . Analysis of one of these clouds, the bright cometary structure G357.46+0.60, suggests that it contains strong polycyclic aromatic hydrocarbon emission features in the 5.8 and 8.0 μm photometric bands, and that these are highly variable over relatively small spatial scales. The source is also associated with strong variations in electron density; a far-infrared continuum peak associated with dust temperatures of ∼30 K; and has previously been observed in the 1720 MHz maser transition of OH, known to be associated with SNR shock excitation of interstellar clouds. This source also appears to contain a young stellar object (YSO) within the bright rim structure, with a steeply rising spectrum between 1.25 and 24 μm. If the formation of this star has been triggered recently by the SNR, then YSO modelling suggests a stellar mass  ∼5–10 M  , and luminosity   L YSO∼102–2 × 103 L  .
Finally, it is noted that a further, conical emission region appears to be associated with the Mira V1139 Sco, and it is suggested that this may represent the case of a Mira outflow interacting with a SNR. If this is the case, however, then the distance to the SNR must be ∼half of that determined from CS   J = 2–1  and 3–2 line radial velocities.  相似文献   

6.
7.
8.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

9.
This is the initial paper in a series presenting the first optical detections and subsequent follow-up spectroscopy of known southern Galactic supernova remnants (SNRs) previously discovered in the radio. These new detections come from the Anglo-Australian Observatory (AAO)/United Kingdom Schmidt Telescope Hα survey of the southern Galactic plane which has opened up fresh opportunities to study Galactic remnants. Here, we present the first optical imaging and follow-up spectra of Galactic SNR G279.0+1.1 where a series of 14 small-scale fragmented groups of Hα filaments have been discovered in a     area centred on G279.0+1.1. Individually they are somewhat inconspicuous but collectively they are completely enclosed within the overall radio contours of this known SNR. Three of these filamentary groupings are particularly prominent and optical spectra have been obtained across two of them. Their morphological structure and spectral characteristics are typical of optically detected SNR filaments. A very strong [S  ii ] emission relative to Hα has been detected with  [S  ii ]/Hα > 0.7  and 1.1, confirming strong, shock-heated emission. This is sufficient to classify these filaments in the likely SNR domain and therefore indicating a direct connection with the radio remnant. Other typical SNR emission lines such as [O  ii ] at 3727 Å, Hβ, [O  iii ] at 4959 and 5007 Å, Hα and [N  ii ] at 6548 and 6584 Å were also detected, lending strong support to an SNR origin of these optical filaments. The value and insights that these optical data can provide for known remnants are discussed along with their relevance to the Galactic nitrogen abundance. A serendipitous discovery of an adjacent H  ii region is also briefly described.  相似文献   

10.
We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star-forming region G9.62+0.20E for a time-span of more than 2600 d. The earlier reported period of 244 d is confirmed. The results of monitoring the 107 GHz methanol maser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 d of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately  1.6 × 106 cm−3  and  6.0 × 105 cm−3  , respectively.  相似文献   

11.
We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as 'chemical clocks' which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales,  ∼102.5 yr  . We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.  相似文献   

12.
G35.6−0.4 is an extended radio source in the Galactic plane which has previously been identified as either a supernova remnant or an H  ii region. Observations from the Very Large Array Galactic Plane Survey at 1.4 GHz with a resolution of 1 arcmin allow the extent of G35.6−0.4 to be defined for the first time. Comparison with other radio survey observations show that this source has a non-thermal spectral index, with   S ∝ν−0.47±0.07  . G35.6−0.4 does not have obvious associated infrared emission, so it is identified as a Galactic supernova remnant, not an H  ii region. It is  ≈15 × 11 arcmin2  in extent, showing partial limb brightening.  相似文献   

13.
The results of B -band CCD imaging linear polarimetry obtained for stars from the Hipparcos catalogue are used to re-examine the distribution of the local interstellar medium towards the IRAS 100-μm emission void in the Lupus dark clouds. The analysis of the obtained parallax–polarization diagram assigns to the dark cloud Lupus 1 a distance between 130 and 150 pc and assures the existence of a low column density region coincident with the observed infrared void. Moreover, there are clear indications of the existence of absorbing material at distances closer than 60–100 pc, which may be associated with the interface boundary between the Local Bubble and its neighbourhood Loop I superbubble.  相似文献   

14.
15.
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between  2 × 104  and  1.5 × 105 yr  . We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H  ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.  相似文献   

16.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

17.
We present high spatial resolution X-ray spectroscopy of supernova remnant G292.0+1.8 made with Chandra observations.The X-ray emitting region of this remnant was divided into 25×25 pixels with a scale of 20 " ×20" each.Spectra of328 pixels were created and fitted with an absorbed one component non-equilibrium ionization model.With the spectral analysis results,we obtained maps of absorbing column density,temperature,ionization age and abundances for O,Ne,Mg,Si,S and Fe.The abundances of O,Ne and Mg show tight correlations between each other in the range of about two orders of magnitude,suggesting that they are all from explosive C/Ne burning.Meanwhile,the abundances of Si and S are also well correlated,indicating that they are the ashes of explosive O-burning or incomplete Si-burning.The Fe emission lines are not prominent in the whole remnant,and their abundance is significantly reduced,indicating that the reverse shock may not have propagated to the Fe-rich ejecta.Based on relative abundances of O,Ne,Mg,Si and Fe to Si,we suggest a progenitor mass of 25- 30 M_⊙ for this remnant.  相似文献   

18.
19.
20.
We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope . A jet in the red outflow lobe (eastern lobe) is clearly detected in all four IRAC bands and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe traced by CO observations. The redshifted jet also extends to a deeply embedded Class 0 source, Very Large Array (VLA) 2, confirming previous suggestions that it is the driving source of the outflow ( Gómez et al. 1994 ). The images show that the easternmost part of the redshifted jet exhibits what appear to be multiple changes of direction. To understand the redshifted jet morphology, we explore several mechanisms that could generate such apparent changes of direction. From this analysis, we conclude that the redshifted jet structure and morphology visible in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period ≈8000 yr) that lies mostly on the plane of the sky. It appears that the observed changes in the redshifted jet direction may be sufficient to account for a significant fraction of the broadening of the outflow lobe observed in the CO emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号