首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A comparative study of meteor ablation in the atmospheres of the Earth and Venus is presented. The classical single body meteor ablation model is extended to incorporate a heat penetration depth estimate allowing the simulation of larger meteoroids, than would an isothermal model. The ablation of icy and rocky meteoroids, with densities of 1.0 and 3.4 g cm−3, respectively, and initial radii of up to for rock and for ice (equivalent to an initial mass of in both cases), was simulated in both atmospheres. In general venusian meteors are brighter than terrestrial equivalents. Large, slow, rocky objects may be up to 0.7 mag brighter on Venus, while small, icy particles with entry speeds in the range 30-60 km s−1, are found to be upwards of 2.7 mag brighter than at the Earth. Venusian meteors reach maximum brightness at greater altitudes than would similar particles at the Earth. Rocky meteoroids have their points of maximum brightness some 15-35 km higher up at Venus, between 90 and 120 km, whereas, for icy particles this altitude difference is about 5-25 km higher up than at the Earth, in the range 100-125 km. These findings agree, for the most part, with recent analytical studies. Venusian meteors, which last from 100 ms to , tend to be shorter-lived than terrestrial meteors, with correspondingly shorter visible trails. Large (), slow () icy particles reach a maximum magnitude of ∼−2 at Venus and remain visible for about one second, with a large section of the smaller faster meteoroids simulated here remaining visible for several hundred milliseconds. In light of recent space-based meteor observations at the Earth [Jenniskens, P., Tedesco, E., Muthry, J., Laux, C.O., Price, S., 2002. Meteorit. Planet. Sci. 37, 1071-1078], such brightness, height and duration estimates as suggested in this work, may be used in developing future observational campaigns to be carried out from Venus orbit.  相似文献   

3.
4.
5.
In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s−1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor-spacecraft apparently struck a small, westward-facing slope of roughly 1/3-1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than . The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85-140 m diameter, formed in not more than 250-550 s, for the case of (gravity-dominated cratering); and not less than 22-26 m diameter, formed in not less than 1-3 s, for the case of (strength-dominated cratering). At , an upper limit to the total ejected mass of 1.8×107 kg (1.5-2.2×107 kg) is consistent with measurements made via long-range remote sensing, after taking into account that 90% of this mass would have stayed close to the surface and then landed within 45 min of the impact. However, at , a lower limit to the total ejected mass of 2.3×105 kg (1.5-2.9×105 kg) is also consistent with these measurements. The expansion rate of the ejecta plume imaged during the look-back phase of observations leads to an estimate of the comet's mean surface gravity of (0.17-0.90 mm s−2), which corresponds to a comet mass of mt=4.5×1013 kg (2.3-12.0×1013 kg) and a bulk density of (200-1000 kg m−3), where the large high-end error is due to uncertainties in the magnitude of coma gas pressure effects on the ejecta particles in flight.  相似文献   

6.
We present CCD photometric observations of 23 main-belt asteroids, of which 8 have never been observed before; thus, the data of these objects are the first in the literature. The majority showed well-detectable light variations, exceeding 0m1. We have determined synodic periods for 756 Lilliana (936), 1270 Datura (34), 1400 Tirela (1336), 1503 Kuopio (998), 3682 Welther (359), 7505 Furushu (414) and 11436 1969 QR (123), while uncertain period estimates were possible for 469 Argentina (123), 546 Herodias (104) and 1026 Ingrid (53). The shape of the lightcurves of 3682 Welther changed on a short time-scale and showed dimmings that might be attributed to eclipses in a binary system. For the remaining objects, only lower limits of the periods and amplitudes were concluded.  相似文献   

7.
8.
We report here the first detection of mono-deuterated acetylene (acetylene-d1, C2HD) in Titan's atmosphere from the presence of two of its emission bands at 678 and 519 cm−1 as observed in CIRS spectral averages of nadir and limb observations taken between July 2004 and mid-2007. By using new laboratory spectra for this molecule, we were able to derive its abundance at different locations over Titan's disk. We find the C2HD value () to be roughly constant with latitude from the South to about 45° N and then to increase slightly in the North, as is the case for C2H2. Fitting the 678 cm−1ν5 band simultaneously with the nearby C2H2 729 cm−1ν5 band, allows us to infer a D/H ratio in acetylene on Titan with an average of the modal values of 2.09±0.45×10−4 from the nadir observations, the uncertainties being mainly due to the vertical profile used for the fit of the acetylene band. Although still subject to significant uncertainty, this D/H ratio appears to be significantly larger than the one derived in methane from the CH3D band (upper limit of 1.5×10−4; Bézard, B., Nixon, C.A., Kleiner, I., Jennings, D.E., 2007. Icarus, 191, 397-400; Coustenis, A., Achterberg, R., Conrath, B., Jennings, D., Marten, A., Gautier, D., Bjoraker, G., Nixon, C., Romani, P., Carlson, R., Flasar, M., Samuelson, R.E., Teanby, N., Irwin, P., Bézard, B., Orton, G., Kunde, V., Abbas, M., Courtin, R., Fouchet, Th., Hubert, A., Lellouch, E., Mondellini, J., Taylor, F.W., Vinatier, S., 2007. Icarus 189, 35-62). From the analysis of limb data we infer D/H values of (at 54° S), (at 15° S), (at 54° N) and (at 80° N), which average to a mean value of 1.63±0.27×10−4.  相似文献   

9.
F. Nimmo  P.C. Thomas  W.B. Moore 《Icarus》2007,191(1):183-192
The global shape of Europa is controlled by tidal and rotational potentials and possibly by lateral variations in ice shell thickness. We use limb profiles from four Galileo images to determine the best-fit hydrostatic shape, yielding a mean radius of 1560.8±0.3 km and a radius difference ac of 3.0±0.9 km, consistent with previous determinations and inferences from gravity observations. Adding long-wavelength topography due to proposed lateral variations in shell thickness results in poorer fits to the limb profiles. We conclude that lateral shell thickness variations and long-wavelength isostatically supported topographic variations do not exceed 7 and 0.7 km, respectively. For the range of rheologies investigated (basal viscosities from 1014 to ) the maximum permissible (conductive) shell thickness is 35 km. The relative uniformity of Europa's shell thickness is due to either a heat flux from the silicate interior, lateral ice flow at the base of the shell, or convection within the shell.  相似文献   

10.
11.
12.
13.
14.
We detected a volcanic outburst in Io's northern hemisphere on 17 April 2006 with the OSIRIS imaging spectrometer at Keck, and confirmed it was still erupting on 2 June 2006. The eruption, which we name 060417A, was located in Tvashtar Paterae, ∼100 km southeast of the February 2000 eruption. The observed temperature was , over a surface area of , providing a total thermal output of .  相似文献   

15.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

16.
17.
18.
Solar light gets scattered at cloud top level in Venus’ atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line . Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at .  相似文献   

19.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号