首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
利用1958—2012年海河流域30个气象站月降水资料、NCEP/NCAR月平均再分析资料及1974—2012年月平均向外长波辐射资料,分析了海河流域盛汛期旱涝急转事件及其与大气环流异常的关系。结果表明,南亚高压和西太平洋副高在盛汛期的月际振荡是海河流域旱涝急转形成的一个重要原因。涝转旱年及旱转涝年涝期对应于"西低东高"的流型(海河流域上游为低槽区,下游为高压区),冷暖空气活跃且易于较长时间在流域交绥,低层水汽输送较强且有正涡度异常,高层辐散和上升运动偏强,流域多雨偏涝;旱期则对应于"西高东低"的流型,西风带环流较为平直,低层有负涡度异常且水汽输送偏弱,高层辐散和上升运动偏弱,海河流域因而少雨偏旱。海河流域旱急转涝(涝急转旱)事件易发生在南亚夏季风偏弱(强)的背景下。海河流域盛汛期旱涝急转与初汛期流域上空气压场强度以及北太平洋涛动(NPO)、南半球环状模(SAM)存在显著的正相关,上述因子可能是旱涝急转事件的前期信号。  相似文献   

2.
基于NECP/NCAR再分析资料和四川省38个站点降水资料,结合长周期旱涝急转指数,分析了四川省夏季旱涝急转的时间演变特征及其与典型年份大气环流的联系。结果表明:1)四川省夏季旱涝急转指数年际变化差异较大,旱转涝事件多于涝转旱事件,但发生旱转涝事件的可能性和强度降低,而涝转旱年强度更强;2)旱转涝年的旱期与涝转旱的涝期相比,前者西太平洋副高位置偏西、偏强,不易将南海及西太平洋的水汽输送到四川,降水偏少偏旱,而后者中高纬槽脊波动剧烈,在高原东南侧低值系统与副高的配合下,有利于暖湿气流向北输送,在四川地区形成降水;而旱转涝年涝期与涝转旱年旱期相比,环流经向运动偏强,中高纬槽脊波动明显,有利于中高纬冷空气南下与低纬北上的暖湿气流相遇形成降水,降水偏多偏涝。  相似文献   

3.
我国西南地区夏季长周期旱涝急转及其大气环流异常   总被引:3,自引:0,他引:3  
孙小婷  李清泉  王黎娟 《大气科学》2017,41(6):1332-1342
利用1961~2015年中国567站逐日降水资料,定义了一个西南地区夏季长周期旱涝急转指数,结果表明:1961~1970年夏季旱转涝多于涝转旱,1971~1980年夏季涝转旱年较多,1981~2000年旱转涝与涝转旱年相当,21世纪初以来,指数又呈现出负值的趋势,涝转旱年偏多。选取西南地区夏季旱涝急转典型年,对旱涝急转年的大气环流和水汽输送异常进一步分析发现,旱转涝年旱期西太平洋副热带高压偏西偏强,中高纬西风带偏强,冷空气不易南下,垂直场上表现为下沉运动,来自孟加拉湾和南海的水汽输送异常偏弱,西南地区亦处于水汽辐散区,因此降水偏少。而涝期中高纬环流的经向运动增强,乌拉尔山以东的槽加深,东亚沿岸脊加强,中高纬西风带偏弱,在垂直场上表现为上升运动,孟加拉湾和南海为西南地区提供了充足的水汽,有利于该地区降水增多;涝转旱年则相反。  相似文献   

4.
本研究利用1961~2019年贵州省5~8月逐月降水资料和同期NCEP/NCAR的再分析资料,结合长周期旱涝急转指数,分析贵州省夏季旱涝急转事件的时空变化特征及其与大气环流异常的联系。结果表明:贵州省夏季旱涝急转存在连续性和阶段性变化的特征,年代际差异较大,但总体涝转旱次数少于旱转涝次数。贵州省旱涝急转事件更容易出现在南部及东部。分析环流特征发现:旱转涝年,旱期中高纬地区纬向型环流,西太平洋副热带高压(下称:副高)面积偏小,脊点偏东,贵州省位于其北侧,低层为下沉运动;涝期为经向型环流,副高脊线位置偏南,面积偏小,贵州省位于副高西侧边缘,低层为上升运动。涝转旱年,涝期环流经向度大,冷空气活跃,副高位置偏南偏东,冷暖空气交汇于长江流域,利于贵州省降水偏多;旱期副高偏北偏东,贵州省受高压脊控制,干旱少雨。   相似文献   

5.
利用1966—2017年海南岛18个气象站逐月降水量、NCEP/NCAR逐月再分析资料及NOAA海表温度资料,定义了后汛期旱涝急转指数(LDFAI),据此分析了海南岛后汛期旱涝急转的气候特征及其海气异常特征。结果表明:(1)近52 a海南岛后汛期旱涝急转现象年际变化大,并呈现一定的年代际特征,存在14 a的强显著周期。空间上,保亭、儋州和白沙发生频率高,东南部沿海次之,乐东最少;北部部分地区和中部强度最强、西南部最弱。(2)旱转涝年,旱期西太平洋副热带高压(副高)异常偏东、强度偏弱,海南处于反气旋流场中心区,且其上空为下沉运动区和整层水汽辐散区;涝期东亚大槽偏强,冷空气和副高南侧偏东气流在海南附近交汇,伴随低层辐合上升运动和整层水汽输送汇合,海南降水形势有利。涝转旱年情况相反。(3)后汛期LDFAI与前期和同期热带中太平洋海温存在显著的负相关性。  相似文献   

6.
摘要:利用1961-2020年凉山州17个站点6-9月的逐月降水资料和NCEP/NCAR再分析月平均格点数据,定义了凉山州夏季长周期旱涝急转指数(LDFAI),并对旱涝急转典型年份的大气环流特征进行分析。结果表明:1961-1970年为明显的LDFAI高值年,旱转涝年多于涝转旱年,且旱转涝强度较强;2001-2010年为明显低值年,旱转涝年少于涝转旱年,前期旱涝急转程度较强,后期旱涝急转程度很弱。涝期,高空西风带强度偏弱,中高纬槽脊更为显著,经向运动较强,有利于冷空气南下,中低纬为多波动纬向环流,凉山州上游短波系统活跃,高原多短波低槽东移影响凉山州,副热带高压位置适中,西脊点位于25°N、120°E附近,有利于孟加拉湾及南海的水汽向凉山州输送,水汽通道条件优于旱期,同时低层辐合、高层辐散的配置更明显,更利于上升运动,旱期则相反。凉山州旱转涝年的前期比涝转旱年的前期下沉运动更强,水汽辐合弱,不易产生降水,而旱转涝年的后期比涝转旱年的后期上升运动更强,水汽辐合强,有利于降水的产生。  相似文献   

7.
内蒙古地区夏季旱涝急转环流异常特征及其预测   总被引:2,自引:0,他引:2  
利用内蒙古地区116个气象观测站逐月降水量、NCEP/NCAR逐月再分析资料、NOAA海表温度资料以及国家气象业务内网提供的130项气候监测指数,计算内蒙古夏季旱涝急转指数并分区,分析各分区"旱转涝"和"涝转旱"年的海气异常特征,探讨各气候区夏季旱涝急转指数与前期环流和海温指数的关系,并构建预测模型。结果表明:(1)近39 a来,内蒙古各气候区从春末夏初到盛夏由旱转涝的特征趋于减弱,而由涝转旱的特征趋于增强。(2)内蒙古西部地区夏季旱转涝年和涝转旱年,东亚大槽和西太平洋副热带高压的位置、强度以及水汽条件和垂直运动均存在显著差异;内蒙古东北部地区夏季旱转涝年和涝转旱年,东北冷涡强度、水汽条件和垂直运动存在显著差异。(3)内蒙古地区夏季旱涝急转指数与前期印度洋和热带西太平洋暖池区、黑潮区及北太平洋东北部海温存在显著负相关关系。(4)基于前期环流及海温指数构建的内蒙古夏季旱涝急转指数预测模型具有一定的预测能力,可为内蒙古地区夏季旱涝急转预测提供一定参考。  相似文献   

8.
近50年长江中下游春季和梅雨期降水变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1961—2009年长江中下游地区52个气象站逐日降水资料,研究了该地区春季降水与梅雨期降水的连续变化特征,划分了连续旱、连续涝、先旱后涝和先涝后旱4类连续性事件,并探讨其成因。结果表明:长江中下游地区春季降水量年际和年代际变化较为显著,其中连续旱和连续涝事件发生较多。前冬Ni?o3区的海温与春季和梅雨期降水量相关性超过0.05显著性水平,前冬青藏高原积雪深度与6月西太平洋季风指数与梅雨期降水量相关性均达到0.05显著性水平。当春季水汽丰富,同时春季与6月副热带高压中心位置持续偏西可能导致春季和梅雨期降水持续偏多;春季水汽丰富,但春季至6月副热带高压中心位置由偏西向偏东转变,可能造成先涝后旱;春季水汽偏少,且春季与6月副热带高压中心位置持续异常偏东,易造成持续干旱。2011年水汽突变可能是导致旱涝急转的直接原因,前冬的La Ni?a事件不利于春季降水而6月副热带高压位置异常西伸, 则容易引发旱涝急转。  相似文献   

9.
利用1961—2015年夏季(5—8月)湖南89个台站的逐月降水资料和NCEP/NCAR再分析资料、海温资料,计算了湖南近55 a的旱涝急转指数(LDFAI),挑选出湖南夏季旱涝急转(旱转涝和涝转旱两种类型)异常年,分析了异常年的同期大尺度环流和前期海温的基本特征,结果表明:(1)旱转涝年,旱期对流层中层鄂霍次克海有阻塞高压,副高偏西偏南,湖南受中纬度偏西气流控制,南亚高压较常年整体偏北偏强,湖南上空伴随着下沉运动加强,水汽辐散,致使湖南少雨干旱;涝期副高较同期偏南,湖南受中纬度低槽和副高共同影响,南亚高压北移,东伸脊点位于川渝交界附近,且高压中心呈青藏高压模态,湖南上空伴随着强烈的上升运动和水汽汇合,导致湖南降水增多。(2)涝转旱年,涝期副高较常年偏东,冷暖空气交汇在湖南地区,南亚高压整体较常年偏南偏弱,湖南上空伴随着上升运动和水汽汇合,湖南偏涝;旱期副高较常年偏西,湖南受副高控制,此时南亚高压主体偏强偏东,东伸脊点位于湖北一带,高压中心呈伊朗高压模态,加上湖南上空下沉运动和水汽输送辐散异常偏强,干旱少雨。(3)LDFAI指数与前期(前一年夏、秋、冬季和当年春季)太平洋相关海区海温存在显著相关性,这为湖南夏季旱涝急转类型的预测提供了参考信号。  相似文献   

10.
2011年长江中下游地区旱涝急转成因分析   总被引:1,自引:0,他引:1  
利用NCEP和国家气候中心提供的再分析资料,对2011年发生在长江中下游地区的旱涝急转事件的成因进行了初步分析。结果表明:此次旱涝急转发生在特定的大尺度环流背景下,5月极涡偏强,而南亚高压和西太平洋副热带高压均偏弱、偏南;6月极涡强度变弱、范围偏小,而南亚高压增强、西移,西太平洋副热带高压加强、西伸。季风活动异常是引发此次旱涝急转的重要因素,前期南海夏季风强度弱,且中间一度中断,6月初突然增强并北推至长江中下游地区。前期我国主要的3条水汽输送带均明显偏弱,6月初又明显加强,导致大量暖湿气流汇集于长江中下游地区并与南下的冷空气交汇,为旱涝急转的发生提供了良好的水汽条件。2010年7月开始至2011年4月结束的拉尼娜事件是此次旱涝急转事件可能的重要外强迫条件之一。  相似文献   

11.
为客观判定贵州省盛夏的旱涝急转事件,本文利用1981~2017年7~8月贵州省78站逐月降水资料,计算并分析了贵州省盛夏旱涝急转指数(IDFA)的时空演变特征。结果表明:1981~2017年贵州省盛夏旱涝急转指数的变化趋势并不明显,但年代际变化特征明显。单独用IDFA来判定旱涝急转典型年并不完全准确,典型旱涝急转年的定义标准为:IDFA绝对值大于1,其7、8月降水距平百分率绝对值在15%以上,且7、8月百分率之差的绝对值在50%以上。贵州省涝转旱频次的大值区位于遵义市南部、黔东南州北部,表明该区域易发生涝转旱事件;旱转涝频次的大值区位于遵义市北部、安顺市东部至黔东南州北部一带,表明该区域易发生旱转涝事件。   相似文献   

12.
云南高原昆明市旱涝急转特征及其城市化响应研究   总被引:1,自引:0,他引:1  
何萍  王盼  李矜霄  刘树华 《高原气象》2021,40(2):272-280
基于昆明市1965-2016年逐日降水资料,计算昆明市汛期(5-10月)的长周期旱涝急转指数、短周期旱涝急转指数和旱涝急转强度,采用小波分析、M-K突变检验、灰色关联度等方法,分析了昆明市的旱涝急转特征及其与城市化的相关性。结果表明:在1965-2016年,昆明市长周期旱涝急转指数LDFAI(Long-term drought-flood abrupt alternations index)呈-0.066·(10a)-1的下降趋势,反映出昆明市的旱转涝事件减少、涝转旱事件增多的状况,并且昆明市汛期长周期旱涝急转指数LDFAI序列出现2个突变点,但突变并不明显;昆明市长周期旱涝急转指数存在18年的主周期变化;从短周期旱涝急转指数SDFAI(Short-term drought-flood abrupt alternations index)来看,昆明市5-7月和8-9月旱转涝事件增多、涝转旱事件减少,而7-8月和9-10月表现出相反的趋势;从旱涝急转与城市化的相关性来看,在分辨率为0.5时,城市化指标的6个因子对旱涝急转产生不同程度的影响,所有指标关联度都在0.6以上,表明城市化指标与旱涝急转显著关联,与旱涝急转强度关联度最大是烟粉尘排放量,最小的是非农业经济总产值,关联度分别为0.91和0.63。  相似文献   

13.
利用1961-2017年辽宁省61个气象站逐月降水数据,以5-8月为研究时段建立旱涝急转指数(drought-flood abrupt alternation index,DFAI)序列,采用线性倾向法、趋势分析、阶段性分析、T检验、ArcGIS空间插值等方法对辽宁省降水集中期的旱涝急转现象进行时空特征分析。结果表明:1961-2017年辽宁省降水集中期DFAI总体以-0.7/(10 a)的速率下降,有13 a出现旱转涝,有19 a出现涝转旱;DFAI强度以0.1/(10 a)的速率略呈上升趋势。近57 a,辽宁省旱转涝多发生在20世纪60年代,涝转旱多发生在20世纪70年代和20世纪初之后,1989年出现了涝转旱的突变,发生频率呈增多趋势,1994年又出现旱转涝的突变,发生频率呈减少趋势。典型旱转涝年(2013年),DFAI的高值区分布在中、西部地区;典型涝转旱年(2014年),DFAI绝对值的高值区分布在东北部和中西部地区。DFAI变化率在空间分布上具有明显的中、北部增多,东、西部减少的趋势差异。  相似文献   

14.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

15.
Using the NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) reanalysis and the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP)during 1981-2000, we investigated the seasonal evolution of the southwesterly wind and associated precipitation over the eastern China-subtropical western North Pacific area and its relationship with the tropical monsoon and rainfall, and analyzed the reasons responsible for the onset and development of the wind. It was found that the persistent southwesterly wind appears over southern China and the subtropical western Pacific the earliest in early spring, and then expands southwards to the tropics and advances northward to the midlatitudes. From winter to summer, the seasonal variation of surface heating over western China and the subtropical western Pacific may result in an earlier reversal of the westward tropospheric temperature gradient over the subtropics relative to the tropics, which may contribute to the earliest beginning of the subtropical southwesterly wind. Additionally, the strengthening and eastward expanding of the trough near the eastern Tibetan Plateau as well as the strengthening and westward moving of the western Pacific subtropical high also exert positive influences on the beginning and development of the subtropical southwesterly wind.In early summer,the northward expansion of the southwesterly wind over southern China is associated with a northward shift of the subtropical high, while the southward stretch of the southwesterly wind is associated with a southward stretch of the trough in the eastern side of the plateau. With the beginning and northward expansion of the subtropical southwesterly wind (namely southwest monsoon), convergences of the low-level air and water vapor and associated upward motion in front of the strongest southwesterly wind core also strengthen and move northward, leading to an increase in rainfall intensity and a northward shift of the rain belt. Accordingly, the subtropical rainy season occurs the earliest over southern China in spring, moves northward to the Yangtze-Huaihe River valley in early summer, and arrives in North China in mid summer.Compared with the subtropical rainy season, the tropical rainy season begins later and stays mainly over the tropics, not pronouncedly moving into the subtropics. Clearly, the Meiyu rainfall over the Yangtze-Huaihe River valley in early summer results from a northward shift of the spring rain belt over southern China,instead of a northward shift of the tropical monsoon rain belt. Before the onset of the tropical monsoon,water vapor over the subtropical monsoon region comes mainly from the coasts of the northern Indo-China Peninsula and southern China. After the onset, one branch of the water vapor flow comes from the Bay of Bengal, entering into eastern China and the subtropical western Pacific via southwestern China and the South China Sea, and another branch comes from the tropical western North Pacific, moving northwestward along the west edge of the western Pacific subtropical high and entering into the subtropics.  相似文献   

16.
The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the southern China in June 2005. Results show that there may exist a relationship between the east-west shift of the WPSH and the process of a southern China heavy rain. The analysis indicates that the vertical motion in the WPSH area is mainly caused by the latent heat release of monsoon rain belts on its northern and southern sides. The vertical motion could cause the accumulation of air mass in the center and west of the WPSH, which leads to its strengthening. The appearance of the northern and southern monsoon rain belts could not only enhance the WPSH by strengthening the descending draft, but also excite the development of positive vorticity and restrict the WPSH’s movement in the north–south direction. Moreover, the Indian monsoon rainfall to the west of the WPSH may excite the development of anticyclonic vorticity on its eastern side, which leads to the westward extension of the WPSH.  相似文献   

17.
利用1961—2015年广东86站3—5月逐日降水资料、NCEP/NCAR再分析资料及NOAA的Hysplit后向轨迹模式资料和海温资料, 分析了2015年广东开汛前后旱涝异常特征, 旱涝急转前后的大气环流和水汽条件转变及成因。(1) 2015年5月第1候广东发生了严重的旱涝急转事件, 旱涝急转前全省严重干旱, 旱涝急转后广东大部地区降水异常偏多。(2)旱涝急转前后, 500 hPa中高纬度由“两槽两脊”转为“两脊一槽”和“两槽一脊”, 副高持续加强, 广东地区高层辐散和低层辐合加强, 地面由冷空气控制广东转为冷暖空气在广东交汇; 水汽输送通道由北部湾和长江中下游地区转为南海南部和中南半岛南部海面, 广东低层水汽净流入增加。(3)黑潮区、北太平洋中部、Ni?o3、Ni?o4区及印度洋和南海的海温异常增暖造成了旱涝急转前后大气环流和水汽的转变。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号