首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
基于MODIS云宏微观特性的卫星云分类方法   总被引:4,自引:2,他引:2       下载免费PDF全文
利用MODIS云光学厚度、云粒子有效半径、云顶高度、云相态等产品,以及表征6种云类的云光学厚度、云粒子有效半径、云顶高度、云相态的特征值,采用最小距离分类法和多阈值判识法相结合,对卫星观测像元的云进行分类,包括层云、层积云、积云、积雨云、雨层云、高积云/高层云、卷云以及卷云伴随高积云或高层云的多层云、卷云伴随层云或层积云的多层云、高积云或高层云伴随层积云或层云的多层云10类。2008年、2013年卫星分类结果与地面站云类观测对比,达到60%的一致性;将相同时间的地面小时降水量与分类结果叠加显示,出现降水处多为雨层云或积雨云。  相似文献   

2.
利用 CloudSat卫星数据处理中心(Cloudsat Data Processing Center,CloudSat DPC)提供的CloudSat卫星数据、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的ERA5再分析资料和美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的 Aqua卫星可见光云图,对冬春季发生在大西洋上四个爆发性气旋个例的云微物理参量垂直分布特征进行了分析。结果表明:爆发性气旋中心云系多为层积云或积云,中心外围云系以雨层云为主,雨层云外部往往伴随着相似高度的高层云,气旋冷锋云带内以雨层云、高层云和高积云为主,冰粒子出现的最低高度与0℃等温线高度几乎重合;冰粒子有效半径随高度的增加而减小,而冰粒子数浓度随高度増加而増大;冰水含量大值区主要位于雨层云中部;液态水主要分布在高层云和层积云底部,冬季爆发性气旋个例内的液态水含量大于春季。  相似文献   

3.
利用NASA/CERES发布的L3级云资料,选取西南地区(云南、贵州、四川、重庆)2001~2010年水高层云、水雨层云、水层积云、水层云的云水含量数据,研究了该区域4种类型云的年和季节云水含量时空分布特征和变化趋势。结果表明:(1)4种类型云的年和季节云水含量均在海拔低的地方偏多,海拔高的地方偏少。重庆、贵州云水含量高于云南、四川;(2)水雨层云年和季节云水含量最大,其次为水层云和水高层云,水层积云云水含量最少;(3)近10 a来,整个西南地区4种类型云的年平均云水含量均呈递减趋势;(4)4种类型云的云水含量秋季高于春季;(5)春季,中云(水高层云、水雨层云)云水含量既有增加区域,也有减少区域,低云(水层积云、水层云)云水含量呈递减趋势;秋季,中云、低云云水含量均为递减趋势;水雨层云和水层云年和季节云水含量的递减趋势最显著。  相似文献   

4.
《干旱气象》2021,39(4)
利用ERA-interim再分析资料分析2009—2018年青海省云液水含量和云冰水含量时空分布特征。结果表明:青海省云液水含量和云冰水含量自西北向东南逐渐增多,玉树南部、果洛东南部和祁连山区为云水资源较为丰富的地区,夏秋季节云水资源最为丰富,可达60~70 g·m~(-2)。从云水资源的垂直分布来看,云液水含量和云冰水含量随海拔高度增高呈先增多后减少的变化趋势,云液水含量在海拔4~6 km高度较多,云冰水含量在海拔7~8 km高度较多,云冰水含量峰值所在高度高于云液水含量峰值所在高度。夏秋季节,青南高原云液水含量和云冰水含量垂直变化幅度大,柴达木盆地云液水含量和云冰水含量垂直变化幅度小。从年际变化趋势来看,2009—2018年青海省大部地区云液水含量、云冰水含量呈增多趋势,且秋季增多趋势最为显著。从月际变化看,云液水含量和云冰水含量9月最高,1月最低。柴达木盆地云液水含量和云冰水含量的月际差异最小,东部农业区云液水含量月际差异最大,青南高原云冰水含量月际差异最大。  相似文献   

5.
利用山西省2008—2010年64架次云结构的飞机探测资料,结合地面观测和卫星数据统计分析了层状云系的宏微观特征。结果表明:降水云和非降水云系的微物理特征量,两者存在显著的差异,层状云要达到降水,云的厚度要达到近2000m;粒子尺度分布云粒子有效半径要达到10~14μm,降水性层状云低云含水量垂直方向上平均为0.03g/m3,中云含水量垂直方向上平均为0.05g/m3,;避光高层云-层积云、雨层云降水过冷水的最大值出现在距0℃层高度以上500m附近,其最大值分别为0.61,0.42g/m3;透光高层云降水过冷水的最大值出现在距0℃层高度以上300m附近,其值为0.28g/m3;云中水分按不同粒子尺度的分配可以看出,直径20、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20、30μm的粒子转化;降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,是冰雪晶,随高度降低冰雪晶的尺度增大,在4个典型温度层的观测中,液态含水量、云粒子及降水的浓度、尺度相较有很大不同。  相似文献   

6.
2001~2002年在实施人工增雨作业的同时利用美国粒子测量系统 ,对吉林省 5~7月降水性层状云进行了科研探测。通过对探测资料的分析 ,得到以下结论 :(1 )吉林省的降水性层状云主要分为 3种云型 :雨层云降水、蔽光高层云—层积云降水、透光高层云降水。其中雨层云中过冷水含量最大 ;(2 )云中过冷水含量与云底高度为负相关 ,与过冷层厚度为正相关 ;(3) 3种云型中距 0℃层高度以上 400~600m高度范围内过冷水含量达最大 ;(4) 3种云型的可播度为 86 %。雨层云的人工增雨潜力为最大。  相似文献   

7.
吉林省层状云中过冷水含量分布特征及人工增雨潜力研究   总被引:3,自引:0,他引:3  
2001~2002年在实施人工增雨作业的同时利用美国粒子测量系统,对吉林省5~7月降水性层状云进行了科研探测。通过对探测资料的分析。得到以下结论:(1)吉林省的降水性层状云主要分为3种云型:雨层云降水、蔽光高层云一层积云降水、透光高层云降水。其中雨层云中过冷水含量最大;(2)云中过冷水含量与云底高度为负相关,与过冷层厚度为正相关;(3)3种云型中距0℃层高度以上400~600m高度范围内过冷水含量达最大;(4)3种云型的可播度为86%。雨层云的人工增雨潜力为最大。  相似文献   

8.
于建华  王湘玉 《气象》2007,33(S1):51-55
通过利用美国粒子测量系统(PMS),对内蒙古东部2001—2002年5—7月降水性层状云进行的科研探测。经过对探测资料分析得出以下结论:(1)内蒙古东部的降水性层状云主要分为三种云型:雨层云降水、蔽光高层云-层积云降水、透光高层云降水。其中雨层云中过冷水含量最大;(2)云中过冷水含量与云底高度为负相关,与过冷层厚度为正相关;(3)三种云型中距0℃层高度以上400?600m高度范围内过冷水含量达最大;(4)三种云型的可播庋为雨层云的人工增雨潜力为最大。(5)在过冷水含量大值区,垂直于高空风做“U”型水平播撒。  相似文献   

9.
利用2009年3月11日机载DMT(droplet measurement technology)粒子测量系统获取的山西层状云探测资料,结合天气、卫星、雷达等,分析了降水性冷云的宏微观结构特征.结果表明,降水云系由高层云和层积云组成,液态含水量变化范围为0 0.42 g/m3.CDP(cloud droplet probe;云粒子探头)和CIP(cloud imaging probe;云粒子图像探头)观测到的粒子数浓度偏大,CDP探测到最大粒子数浓度为451.93 cm-3,CIP探测到最大粒子数浓度为162.78 L-1.本次探测适宜的人工增雨作业温度区间为-11.4-7℃、-4.40℃.高层云上部以冰晶的核化和凝华增长为主;高层云的中下部为冰雪晶活跃增长层;通过凝华、碰并机制高层云降落的冰雪晶粒子在层积云进一步长大.层状云水平分布不均匀特性很明显.统计云滴谱谱型分布发现,双峰型、多峰型出现几率较高,指数型主要出现在层积云的中部和顶部,出现单峰型时LWC(liquid water concentration;液态水含量)小于0.03 g/m3或大于0.1 g/m3.  相似文献   

10.
切变线降水系统微物理特征及隆水机制个例分析   总被引:2,自引:0,他引:2  
利用机载云粒子探测系统(PMS).对2004年7月1日影响吉林省的一次切变线降水过程进行了探测飞行,利用所获取的宏微观资料对此次降水过程的微物理结构、降水机制进行综合分析.结果表明:此次切变线降水云系主要由高层云、雨层云、碎云构成,高层云和雨层云中间夹有1100m左右的无云区;3类云中平均云滴浓度、平均云滴直径各不相同;云水含量随高度分布不均匀,云的不同部位云水含量起伏较大;冰晶浓度平均为17.3个/L;此次探测的降水云系符合Bergeron提出的催化云一供水云相互作用导致降水的概念.根据云图及其他探测资料综合分析,冰晶主要产生于高层云上部或卷层云的冰晶播撒,供水云为高层云中下部和雨层云.  相似文献   

11.
利用2013~2016年的Aqua MODIS卫星和CloudSat卫星的二级产品资料,对发生在京津冀地区夏季的降水冰云和非降水冰云进行了统计。基于此,对比分析了两类冰云的云类型,研究了二者在云特征参数、云层数及垂直结构上的差异,并且探究了二者在不同通道下云特征参数的相对大小。结果表明:1)京津冀地区的降水冰云以深对流云和雨层云为主,分别占48.63%和34.65%,而非降水冰云以高层云和卷云为主,分别占55.62%和31.58%。2)降水冰云和非降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别为230.99 K、10.90 km、53.26、937.98 g/m2、31.45m和236.17 K、10.10 km、12.81、209.00 g/m2、27.54 μm。3)降水冰云以单层云为主,占80.39%,双层云占18.75%;而非降水冰云仍以单层云为主,占85.35%,双层云则占14.38%,比降水冰云低。4)相较于非降水冰云,降水冰云中卷云和高积云云体位置较高,而高层云和深对流云位置较低。5)随高度变化,降水冰云冰水含量是双峰结构,而非降水冰云是单峰结构;二者的粒子数浓度则差异不大;非降水冰云的粒子有效半径在5~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云的积分云水总量、光学厚度和粒子有效半径>模态[分别代表该云特征参数在1.6、2.1、3.7 μm通道中的数值,当n=1, 2, 3时,分别代表光学厚度(b1)、积分云水总量(b2)、有效半径这三种(b3)]的比例都高于非降水冰云,而二者在云参数模态的比例则有差异。  相似文献   

12.
牛玺  马晓燕  贾海灵 《气象科学》2022,42(4):467-480
本文利用A-Train卫星队列中的Cloudsat卫星所提供的二级云分类产品资料(结合了CALIPSO卫星气溶胶激光雷达)2B-CLDCLASS-LIDAR,选取2007年3月至2017年2月的样本数据进行统计分析,研究北半球主要的气溶胶排放源区(中国东部,美国东部和欧洲西部)不同云型出现频率的分布特征。结果表明,在以单层云出现的8种云类中卷云,层积云和积云的发生频率总和高达50%~70%,其次为高层云、高积云和雨层云,而深对流云和层云这两种云仅占10%以下。各类云的发生频率的空间分布可看出卷云和层积云的发生频率可高达90%以上,高层云的发生频率在70%~80%左右,高积云和积云的发生频率则接近70%以上,深对流云和层云的发生频率则在20%以下。其中,卷云、深对流云和积云主要出现在低纬度的海洋上;高层云和高积云主要出现在中低纬工业发达的陆地上;层积云、层云和雨层云主要出现在中高纬地区,其中层积云和层云出现在海洋上居多,雨层云出现频次的海陆差别不大。不同云型在不同的季节出现频次差异明显,在夏季出现较多的云型以卷云、深对流云,积云和层云为主;在冬季则是高层云、层积云和雨层云这样稳定型的云型占据主导,同时还发现卷云和层积云发生频率的月变化相反,而高层云和雨层云发生频率的月变化相似。  相似文献   

13.
中国西北地区云的分布及其变化趋势   总被引:8,自引:1,他引:8  
利用1983年7月—2001年9月ISCCP D2云的月平均资料,针对西北地区15种不同类型云的分布特征进行了分析,给出了中、低云量之和以及高云量在3个气候子区的多年变化趋势,初步探讨了其形成机制。结果表明:水层云、冰层云、水雨层云、冰雨层云和深对流云的光学厚度和云水路径值最大;水层云主要出现在天山山区、北疆地区和陕西南部,冰层云主要出现在北疆地区,水雨层云、冰雨层云和深对流云以及水高层云、冰高层云、卷层云的云量高值区在天山—昆仑山—祁连山一带以及陕南和/或陇南地区,因此上述地区也是有利于人工增水作业的地区。近20年中,高云量在3个气候区都呈明显下降趋势,中、低云量之和则呈上升趋势。西北地区云与地气系统之间可能存在这样一个过程:地面气温的升高,促使地面蒸发加剧,从而导致中、低云量增多而使降水增多,同时高云云量减少。  相似文献   

14.
三江源地区秋季典型多层层状云系的飞机观测分析   总被引:4,自引:0,他引:4  
利用三江源地区一次机载粒子测量系统PMS(Particle Measuring Systems)的分层垂直探测资料,系统研究了该地区秋季典型多层层状云系的微物理特性,结果表明:(1)云系由4层云层组成,Cs(卷层云)和上层As(高层云)为冰云,下层As和Sc(层积云)为过冷混合态云。下层As的云粒子浓度和过冷水含量最大,Sc的云粒子尺寸及谱宽最大,且具有较明显的地区特性;(2)Sc(下层As及对流泡)中中值直径在3.5~18.5 μm(3.5~ 21.5 μm)之间的云粒子为液相,中值直径大于21.5 μm(24.5 μm)的云粒子为冰相;(3)混合态云中高过冷水区与低过冷水区云的粒子谱分布差异明显,Sc高过冷水区有较明显的淞附增长现象;(4)Sc、下层As云底、对流泡顶高过冷水区的云滴有效半径依次增加。Sc高过冷水区的过冷水含量比率均值及标准差为69.9±19.4%,且与过冷水含量存在一定的关联性;下层As云底高过冷水区的过冷水含量比率无明显变化,其均值及标准差为89.2±8.1%;(5)混合态云各高度层FSSP(前向散射粒子谱探头)平均粒子谱均为单峰型伽玛分布,混合态云和冰云各高度层2DC(二维灰度云粒子探头)平均粒子谱基本上都为负指数型分布。  相似文献   

15.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

16.
利用2007~2010年北半球夏季(6~8月)CloudSat卫星搭载的云廓线雷达(Cloud Profile Radar,CPR)探测结果对0°~60°N区域单层、双层和三层云系的水平分布、垂直结构特征及各云层云类组成、云水路径等物理量分布进行分析。云量的统计结果表明CPR探测的单层、双层和三层云系的云量分别为36.63%、8.26%和1.40%,云量的水平分布表明其高值区主要位于对流旺盛区域,且高值区的云层云顶高、厚度大,而低值区则多位于副热带高压区域。对不同云类的出现频率统计分析结果表明,单层云系中各云类的出现频率相近;多层云系的上层以卷云为主,下层以层积云为主。对比海陆差异发现洋面卷云和层积云的出现频率显著高于陆面,但高层云和高积云的出现频率低于陆面。云水路径分析表明,单层云系的冰水路径和液水路径均最大,而在多层云系中云层越高、厚度越大、冰水路径越大,液水路径则随着云层的降低增大。  相似文献   

17.
利用2013年10月13日机载粒子测量系统(PMS)在张家口涞源地区对积层混合云中上部进行的增雨探测数据,分析了云的垂直微物理结构、云区的可播性和作业前后液态云粒子、冰晶及降水粒子的微物理变化。结果表明,此次降水性积层混合云的垂直结构由冷、暖两层云配置,云层发展厚实,冷云区云粒子浓度平均为62 cm-3,液态水含量最大0.05 g/m3;2DC和2DP探测的冰晶及降水粒子平均浓度分别为1.9和2.2 L-1;暖云内云粒子数浓度集中在300 cm-3左右,液态水含量约0.1 g/m3。探测区域云粒子数浓度的水平分布不均匀。利用云内过冷水含量和冰晶浓度等参数判断,该降水性积层混合云的播撒作业层具有强可播性。对比作业前后云中粒子浓度及平均直径发现,云粒子在作业前时段内的平均浓度为31 cm-3,远高于作业后平均浓度(17.6 cm-3);但平均直径变化不大。作业后冰晶粒子通过贝吉龙过程消耗过冷水长大,浓度由之前的0.86 L-1增至4.27 L-1,平均直径也增至550 μm。冰晶粒子逐渐长大形成降水,降水粒子浓度也相应有所升高,谱明显变宽。   相似文献   

18.
朱怡杰  邱玉珺  陆春松 《气象》2019,45(7):945-957
结合2014年7—8月第三次青藏高原大气科学试验获得的毫米波雷达资料与探空温度资料,利用模糊逻辑法反演了西藏那曲地区夏季云中水成物的相态并对其分布特征开展了研究。首先,分析了层积云、雨层云以及深对流云的典型个例,发现三类云反射率因子、多普勒速度、速度谱宽以及退偏振因子垂直分布均有较大差别,相应的云中水凝物的回波特征与相态分布差别也较大。其次,研究了液相、混合相和冰相云层的云雷达探测特征,发现液相云层在0℃层以下的暖云层和0℃层以上的过冷水云层均具有反射率因子高值中心,混合云层的反射率因子高值中心随高度上升变化不大,冰云层的反射率因子高值主要集中在6 km以上,且随高度上升而趋于集中;三种相态云层出现频率高值分别集中在地面以上1、2~3、3~4 km高度层;液相云层在上午出现频率最高,混合相云层高频率发生在下午,冰相云层在晚上的出现频率最高。三种相态云层出现在上午的高度与下午和晚上相比较低,出现在晚上的高度范围最大;液相云层厚度一般小于0.3 km,冰相云层云顶位于9 km左右高度层时平均厚度最大,中云内的混合相和冰相厚度变化较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号