首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

2.
Piper  Hiscott  & Normark 《Sedimentology》1999,46(1):47-78
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known.
The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses.
Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.  相似文献   

3.
The Transverse Ranges of southern California represent an uplifted and variably dissected Mesozoic magmatic arc, and Mesozoic to Holocene sedimentary and volcanic strata deposited in convergent and transform tectonic settings. Modern sand within part of the Western Transverse Ranges represents: first-order sampling scale of the Santa Monica and the San Gabriel Mountains; second-order sampling scale of the Santa Clara River draining both mountain ranges; and third-order sampling scale of the beach system between the mouth of the Santa Clara River and the eastern Santa Monica Mountains, and turbidite sand of the Hueneme-Mugu submarine fan. Source lithology includes plutonic and metamorphic rocks of the San Gabriel Mountains, and sedimentary and volcanic rocks of the Santa Monica Mountains. First-order sands have large compositional variability. Sand from local coastal drainage of the Santa Monica Mountains ranges from basaltic feldspatholithic to quartzofeldspathic. Sand of the San Gabriel Mountains local drainages has three distinct petrofacies, ranging from metamorphiclastic feldspatholithic to mixed metamorphi/plutoniclastic and plutoniclastic quartzofeldspathic. Second-order sand is represented by the main channel of the Santa Clara River; the sand has an abrupt downstream compositional change, from feldspathic to quartzofeldspathic. Third-order sand (beaches and deep-sea turbidite samples) of the Santa Monica Basin is quartzofeldspathic. Beach sand is more quartz-rich than is Santa Clara river sand, whereas turbidite sand is more feldspar-rich than is beach sand. Deep-sea sand has intermediate composition with respect to second-order samples of the Santa Clara River and third-order samples of the beach system, suggesting that (1) the Santa Clara River is the main source of sediments to the marine environment; and (2) local entry points from canyons located near local drainages may generate turbidity currents during exceptional flood conditions. Petrologic data of modern sand of the study area are highly variable at first- and second-order scale, whereas third-order sand is homogenized. The homogenized composition of deep-marine sand is similar to the composition of most ancient sandstone derived primarily from the Mesozoic dissected magmatic arc of southern California. This study of the Western Transverse Ranges illustrates the effects of source lithology, transport, depositional environment, and sampling scale on sand composition of a complex system, which provides insights regarding actualistic petrofacies models.  相似文献   

4.
This paper presents an overview of the evolution of the Nile deep‐sea turbidite system during the last 200 kyr, over a series of glacial to interglacial cycles. Six individual deep‐sea fans were identified from an extensive field data set. Each fan comprises a canyon, channel system and terminal lobes. Two of these fan systems were possibly active at the same time, at least during some periods. Large‐scale slope failures destroyed channel segments and caused the formation of new submarine fan systems. These slope failures thus played an important role in the overall evolution of the turbidite system. During the last glacial maximum (ca 25 to 14·8 ka) the central and eastern parts of the Nile deep‐sea turbidite system were relatively inactive. This inactivity corresponds to a lowstand in sea‐level, and a period of arid climate and relatively low sediment discharge from the Nile fluvial system. Rapid accumulation of fluvial flood‐derived deposits occurred across the shallower part of the submarine delta during sea‐level rise between ca 14·8 and 5 ka. The most recent deep‐sea channel–lobe system was very active during this period of rising sea‐level, which is also associated with a wetter continental climate and increased sediment and water discharge from the Nile. Increased sediment deposition in shallower water areas led to occasional large‐scale slope failure. The Nile deep‐sea turbidite system was largely inactive after ca 5 ka. This widespread inactivity is due to retreat of the coastline away from the continental shelf break, and to a more arid continental climate and reduced discharge of sediment from the Nile. The Nile deep‐sea turbidite system may be more active during periods of rising and high sea‐level associated with wetter climates, than during lowstands, and may rapidly become largely inactive during highstands in sea‐level coupled with arid periods. These acute responses to climate change have produced sedimentary/stratigraphic features that diverge from traditional sequence models in their nature and timing. This large‐scale sedimentary system responded to monsoon‐driven climate change and sea‐level change in a system‐wide and contemporaneous manner.  相似文献   

5.
The margin of the Foz do Amazonas Basin saw a shift from predominantly carbonate to siliciclastic sedimentation in the early late Miocene. By this time, the Amazon shelf had also been incised by a canyon that allowed direct influx of sediment to the basin floor, thus confirming that the palaeo‐Amazon fan had already initiated by that time (9.5–8.3 Ma). Above this interval, during a prolonged lowstand, Messinian third‐order sequences are preserved only in the incised‐valley fills of the canyon with no equivalent strata on the shelf. Third‐ and fourth‐order sequences younger than Messinian are preserved on the shelf after sea‐level rise above the shelf by the early Pliocene. Sequences younger than 3.8 Ma often show fourth‐order cyclicity with an average duration of 400 ka (larger scale eccentricity cycles) often preserved in high‐sedimentation‐rate areas of river deltas. Mass wasting and transportation of slope sediments to the basin began to play an important role in sediment dispersal at least as far back as the mid‐Pliocene, after rapid progradation had produced steeper slopes more prone to failure.  相似文献   

6.
The frequency and periodicity of preserved graded turbidite cycles in submarine fans in the Coral Sea and Sea of Japan are correlated to times of tectonic uplift in response to major collisions in the Owen-Stanley Range of Papua and the Hida Range of Japan, respectively. Large frequencies and shorter-term periodicities of turbidites at DSDP Site 210 were coeval with early Pliocene maximum tectonic-uplift rates which occurred in the Owen-Stanley Range in response to obduction. Similarly, large frequencies and shorter-term periodicities of turbidites at Site 299 (Toyama Submarine Fan) were coeval with the late Pleistocene uplift in the Hida Range; this uplift of 1000 to 1500 m occurred in response to collision tectonics. In both cases, trends of increasing frequencies and towards shorter-term periodicities of preserved turbidite depositional events correlate to trends of increasing rates of tectonic uplift.The role of sea-level fluctuations on changing denudation rates in these two collision zones is secondary. At Site 210, larger frequencies and short-term periodicities of preserved turbidites were coeval with early Pliocene high stands of sea level, whereas at Site 299, Pleistocene sea-level fluctuations are considered minor because at low stands of sea level, both relief and denudation rates were increased by about ten to 14%. At Site 286 (New Hebrides Basin), Eocene turbidite deposition is coeval with high stands of sea level, whereas at Site 297 (Northern Shikoku Basin), turbidite deposition was coeval with both rising and falling sea level.Analysis of both frequency and periodicity of turbidites by fan subenvironment at Site 299 indicates a record of continuous deposition, and maintainance of frequency and periodicity trends controlled by tectonic uplift. Late Pleistocene channel and overbank deposits showed periodicity differences of less than 28% of an order of magnitude, whereas Miocene-Pliocene overbank and distal turbidite periodicities differed by a 19% order of magnitude. Greater differences in magnitude occurred between distal turbidites or early Pleistocene age and Pliocene age than between Miocene-Pliocene overbank and distal turbidite deposition with a magnitude difference of 860%. These findings suggest that shifting depocenters and differences in sedimentation history in subenvironments of submarine fans are secondary to the role of tectonic uplift in this particular case.The minimal rate of tectonic uplift required to generate deep-sea fan turbidities appears to be approximately 400 m/million years. This figure is tentative and is based on very few observation points.Frequency and periodicity of preserved turbidite cycles in submarine fans in active continental margins and ancient counterparts should provide an independent measurement of rates and timing of tectonic uplift, particularly in collision terrains. Because this sediment parameter is a record of a single process from a single source and a record of “event stratigraphy”, its usage is preferable over standard and bulk sediment accumulation rates determined from age depth curves.  相似文献   

7.
林畅松  刘景彦  胡博 《沉积学报》2010,28(5):868-874
应用二维层序地层模拟系统开展了构造活动盆地沉积层序的形成过程的动态模拟分析,揭示了同沉积断裂活动、湖平面变化及沉积物供给量变化相互作用对沉积层序形成的控制作用。模拟表明,快速的构造沉降、相对高的湖平面和大量的沉积物供给是形成相对深水扇三角洲的必要条件;而沉积物的供给量变小或构造沉降量加大时有利于形成近岸湖底扇或水下扇。模拟揭示出断陷湖盆陡坡边缘断裂形成的古地貌坡折控制着低水位域浊积扇或湖底扇的发育部位,同时对水进或高位域的三角洲前缘的沉积中心的分布具控制作用。断裂坡折带的构造沉降是控制可容纳空间变化的关键因素。在陆内前陆逆冲构造边缘,层序发育早期(底部)发育冲积扇和河流沉积,但由于相对快的构造沉降形成水进序列;在快速沉降的晚期沉降速率减小,碎屑体系向盆地方向推进,形成广泛河流三角洲沉积。由隐伏逆冲断裂形成的构造坡折带对低位域的分布具控制作用。在构造坡折带下的低位域砂体与上覆的水进域泥岩组合可形成重要的地层油气藏。  相似文献   

8.
ABSTRACT The Moroccan Turbidite System (MTS) on the north‐west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep‐water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large‐volume (> 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin‐wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (< 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand‐rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large‐volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea‐level change and do not appear to be specifically connected to sea‐level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea‐level change.  相似文献   

9.
右江盆地层序格架中的生储盖组合特征及勘探意义   总被引:7,自引:0,他引:7  
在层序地层研究基础上,结合右江盆地油气勘探成果,建立了右江盆地层序地层格架与油气生储盖组合之间的关系模型。具体是以南盘江凹陷及十万大山地区为重点,通过泥盆纪-中三叠世层序地层中生储盖组合的研究,阐述相应的不同级别层序格架 (二级及三级 )中储集体的成因类型及时空分布规律,进而探讨不同成因层序中有利储集体的发育模式。  相似文献   

10.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The Tanqua area of the Karoo basin, South Africa, contains five Permian deep-water turbidite fan systems, almost completely exposed over some 640 km2. Reconstruction of the basin-fill and fan distributions indicates a progradational trend in the 450 m+ thick succession, from distal basin floor (fan 1) through basin-floor subenvironments (fans 2, 3 and 4) to a slope setting (fan 5). Fans are up to 65 m thick with gradational to sharp bases and tops. Facies associations include basin plain claystone and distal turbidite siltstone/claystone and a range of fine-grained sandstone associations, including low- and high-density turbidite current deposits and proportionally minor debris/slurry flows. Architectural elements include sheets of amalgamated and layered styles and channels of five types. Each fan is interpreted as a low-frequency lowstand systems tract with the shaly interfan intervals representing transgressive and highstand systems tracts. All fans show complex internal facies distributions but exhibit a high-frequency internal stratigraphy based on fan-wide zones of relative sediment starvation. These zones are interpreted as transgressive and highstand systems tracts of higher order sequences. Sandy packages between these fine-grained intervals are interpreted as high-frequency lowstand systems tracts and exhibit dominantly progradational stacking patterns, resulting in subtle downdip clinoform geometries. Bases of fans and intrafan packages are interpreted as low- and high-frequency sequence boundaries respectively. Facies juxtapositions across these sequence boundaries are variable and may be gradational, sharp or erosive. In all cases, criteria for a basinward shift of facies are met, but there is no standard 'motif' for sequence boundaries in this system. High-frequency sequences represent the dominant mechanism of active fan growth in the Tanqua deep-water system.  相似文献   

12.
以鄂尔多斯盆地西南缘延长组为例,运用高分辨率层序地层学原理,对延河等露头沉积特征进行深入研究。研究认为不整合面、冲刷侵蚀面、岩性岩相转换面和湖泛面为重要的层序界面,并划分出1个超长期基准面旋回,5个长期基准面旋回及17个中期基准面旋回。延长期东、西两岸发育河流—三角洲沉积体系,东北部主要为曲流河、曲流河三角洲体系;西南主要发育辫状河及辫状河三角洲沉积体系。有利储集砂体主要为水下分流河道成因、水下分流河道—河口坝复合成因、河口坝成因和滑塌浊积扇成因等4种类型。研究认为,随湖平面变化,在基准面升降过程中,可容纳空间(A)与沉积物补给量(S)的比值(A/S)影响不同物源方向沉积体系的分布,并建立了沉积演化分布模式。  相似文献   

13.
Bed thickness data of two turbidite sections viz., Corbyn's Cove section, South Andaman and Kalipur section, North Andaman those belong to Oligocene Andaman Flysch Group, a forearc submarine fan system, were assessed for facies clustering employing Hurst statistics. Both the sections show Hurst phenomenon and reveal clustering in terms of thick and thin beds. Forcing behind event (bed) depositions in either of the studied sections was assessed statistically and inferred to be non-random and with cyclicities of irregular physical length. The inferred paleogeography through Hurst criteria though worked well for distal fan setting i.e., basin floor sheet sandstones of Corbyn's Cove section, its unequivocal application in proximal fan deposits remains to be tested. The mismatch in paleogeographic interpretation between Hurst test result (lobe-interlobe) and field observation (channel-levee) for the inner fan deposit is explained through differential facies stacking between fans grow in sea-level lowstand and highstand. Lower bed amalgamation, poor sand to mud ratio and subordinately present thick event deposits may be the result of active growth of Andaman Flysch fan in sea level highstand and expressed in lower Hurst K value for inner fan channel-levee association (Kalipur section) compared to many of the channel-levee deposits of lowstand fan systems observed world over.  相似文献   

14.
The Salvan‐Dorénaz Basin formed during the Late Palaeozoic within the Aiguilles‐Rouges crystalline basement (Western Alps) as an asymmetric, intramontane graben elongated in a NE–SW direction and bounded by active faults. At least 1700 m of fluvial, alluvial fan and volcanic deposits provide evidence for a strong tectonic influence on deposition with long‐term, average subsidence rates of > 0·2 mm yr?1. The early basin fill was associated with coarse‐grained alluvial fans that were dominated by braided channels (unit I). These issued from the south‐western margin of the basin. The fans then retreated to a marginal position and were overlain by muddy floodplain deposits of an anastomosed fluvial system (unit II) that drained towards the NE. Deposition of thick muds resulted from a reduction in the axial fluvial gradient caused by accelerated tectonic subsidence. Overlying sand‐rich meandering river deposits (unit III) document a reversal in the drainage direction from the NE to the SW caused by synsedimentary tectonism, reflecting large‐scale topographic reorganization in this part of the Variscides with subsidence now preferentially in the W and SW and uplift in the E and NE. Coarse‐grained alluvial fan deposits (unit IV) repeatedly prograded into, and retreated from, the basin as documented by coarsening‐upward cycles tens of metres thick reflecting smaller scale tectonic cycles. Volcanism was active throughout the evolution of the basin, and U/Pb isotopic dating of the volcanic deposits restricts the time of basin development to the Late Carboniferous (308–295 Ma). 40Ar/39Ar ages of detrital white mica indicate rapid tectonic movements and exhumation of the nearby basement. In unit I, youngest ages are close to that of the host sediment, but the age spectrum is wide. In unit II, high subsidence and/or sedimentation rates coincide with very narrow age spectra, indicating small, homogeneous catchment areas. In unit III, age spectra became wider again and indicate growing catchment areas.  相似文献   

15.
The Late Eocene-Early Oligocene sedimentary fill of the Lemnos Island, NE Greece, is represented by a submarine fan and shelf deposits. Turbidites in the system occur as a laterally isolated body, with one sediment influx center present. The influx center is a proximal distributary channel that occupies a position approximately in the fan’s center and displays the coarsest sediment in the study area. It also suggests in association with the main palaeocurrent direction toward NE a curved shape for the fan. The stratigraphic succession of the submarine fans indicates that their sedimentation started during the base level fall and completed shortly after the base level rise. As a consequence, the study area was filled by turbidites that correspond to forced regressive, lowstand normal regressive, and transgressive genetic units. The progradational bedsets, within the basal part of the turbidite deposits, recorded the history of the base level fall. The mixed progradational/aggradational style of the upper part of the submarine fan system suggests that the regression of the shoreline is driven by sediment supply during a period of base-level rise at the shoreline, or at a time of baselevel stillstand. The overlying shelf facies consist of thick to medium bedded sandstones and mudstones, which display a general thinning upward trend. The base of the mudstone facies that overlie the thick-bedded, amalgamated sandstones corresponds to a transgressive surface. This surface separates the low-stand deposits (thick-bedded sandstones) from the high stand deposits (mudstone facies), suggesting that deposition of shelf facies occurred during a transgressive system tract.  相似文献   

16.
The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity flow types are recognized: (1) turbidite channels with a truncational basal and concordant overburden relationship along the shelf edge and slope, comprising laterally-shifting and vertically-aggrading channel complexes; (2) slides with a spoon-shaped morphology slip steps on the shelf-break and generated from the deformation of poorly-consolidated and high water content sediments; (3) slumps are limited on the shelf slope, triggered either by an anomalous slope gradient or by fault activity; (4) turbidite sheet complexes (TSC) were ascribed to the basin-floor fan and slope fan origin, occasionally feeding the deep marine deposits by turbidity currents; (5) sediment waves occurring in the lower slope-basin floor, and covering an area of approximately 400?km2, were generated beneath currents flowing across the sea bed; and (6) the central canyon in the deep water area represents an exceptive type of gravity flow composed of an association of debris flow, turbidite channels, and TSC. It presents planar multisegment and vertical multiphase characteristics. Turbidite associated with good petrophysical property in the canyon could be treated as a potential exploration target in the QDNB.  相似文献   

17.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Permian deep‐water mudstones in the Tanqua Basin, South Africa, have been studied using geochemical and spectral gamma ray techniques. The mudstones occur as thick sequences between sand‐rich submarine fans, but also occur as thinner mud‐rich units within each fan. The interfan mudstones are interpreted to have accumulated during transgression and the consequent period of relatively high sea‐level, while the submarine fans and their intrafan mudstones were deposited during regression and relatively low sea‐level. Geochemical analyses revealed systematic differences between interfan and intrafan mudstones because the two types of mudstones have slightly different source lithologies. Differences between the two types of mudstone suggest that changes in relative sea‐level played a role in controlling exposure of sediment source areas. There are geochemical signals that display systematic stratigraphic trends within both interfan and intrafan mudstones. These are best explained by gradual denudation, exposure and weathering of different lithologies within a single sediment source area. Both interfan and intrafan mudstones have uniform geochemical signals along the flow direction except for the relative amount of uranium. It is most likely that the basinward increase in uranium in the mudstones is the result of reduced clastic dilution of uranium‐bearing pelagic fallout.  相似文献   

19.
对内蒙古东部开鲁盆地陆西凹陷地质和地球物理资料的综合研究表明,上侏罗统沉积以温湿气候条件下的粉、细砂岩及泥岩为特征,其沉积序列可以被划分成周期为3-5 Ma的5个沉积层序,各沉积层序之间均为不整合面或与之相关的整合面。沉积层序格架和构型主要受控于构造活动、气候和物源供给。各沉积层序的展布也受盆地结构和断裂差异活动的影响,表现出南厚北薄的地层展布特征。由于在马北斜坡存在地形或断裂坡折带,故可将一个沉积层序细分成低位、湖侵和高位体系域。在明确首次和最大湖泛面基本特征的基础上,重点叙述了层序B低位、湖侵和高位体系域的近岸水下扇、扇三角洲等沉积体系特征和层序构型主控因素。对有利烃源岩、储层和盖层等成藏基本条件进行分析后,指出层序C西绍根断层下降盘的近岸水下扇和位于坡折带之下的浊积扇是寻找岩性圈闭的有利地区。  相似文献   

20.
A recent (100 yr old) turbidite is described from Hueneme Fan, California Continental Borderland. Dense sampling over the fan surface has allowed excellent delineation of the characteristics of this deposit. It exhibits Bouna DE sequences and has a distinctly bimodal, sandy silt grain size distribution. Through the use of generalized fluid dynamics equations, it is possible to reconstruct original flow properties of the current which deposited this material. The calculated velocities ranged from 10–90 cm s-1 and excess density (above ambient seawater) from 0·001–0·005 g cm-3 in the lower midfan and upper fan channel regions, respectively. Height of the current ranged from 5–15 m, on slopes from 1·5 to 0·15°. A total of 107 m3 of sediment was deposited during 10 days. The turbidity current is conjectured to have originated from direct river input during the floods of 1884. An older event is also described, which has distinctly different properties and origins. The grain sizes of this older deposit are much coarser, and sedimentary structures suggest higher flow regimes. This turbidite is conjectured to have been deposited from a higher density, faster current thought to have been generated by slumping. The need for a better understanding of the controls on the characteristics of turbidity currents and their effect on fan morphology is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号