首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
影响大掺量钢渣水泥强度的主要因素探讨   总被引:5,自引:0,他引:5  
李建平  倪文  陈德平 《矿物岩石》2003,23(4):105-109
根据对大掺量钢渣水泥的组分活性差和强度低的主要影响因素及其解决方法进行试验的结果认为:可以通过掺加水泥熟料、粒化高炉渣和粉煤灰的方法来改善钢渣的物质组成,进而提高其强度,但必须加入适当的激发剂。常用的激发剂有硫酸盐系(如石膏)、硅酸盐系(如水玻璃)等。试验表明:当加入激发剂B和高炉渣磨细粉,即当钢渣加入量为60%,加10%的激发剂B和30%的高炉渣磨细粉,或者当钢渣和高炉渣总加入量≥94%,只加5%或6%的激发剂C时,钢渣水泥的强度均可以达到325水泥的强度要求。同时还认为:增加组分的细度也是提高钢渣水泥组分活性、提高强度的一种有效方法。  相似文献   

2.
高炉渣基矿物聚合材料的制备及其对铅离子的固定   总被引:1,自引:0,他引:1  
以高炉渣和煅烧高岭土为粉体原料,KOH溶液为激活剂,采用振动成型方法,在20℃下养护24 h,制备矿物聚合材料。实验样品静置固化28 d,采用压力试验机可测得其抗压强度高达24~65 MPa。矿物聚合材料制品在1 d、3 d、7 d、28 d的X射线衍射(XRD)、红外光谱(IR)等测试分析表明,高炉渣中的玻璃相在强碱的作用下发生溶解,之后形成Si、Al低聚体,最后形成各种晶体。采用矿物聚合材料可以有效地固定Pb2+。用含Pb2+的溶液配制矿物聚合材料,静置固化28 d,测其抗压强度以及Pb2+溶出率。实验结果表明,Pb2+的存在降低了矿物聚合材料的1 d的抗压强度,但对7 d及28 d抗压强度没有影响,聚合材料对Pb2+固定率达到99.9%。  相似文献   

3.
Arsenic in groundwater is a serious environmental problem. The contamination of groundwater with arsenic has been of utmost concern worldwide. Steel slag is a solid waste generated from steel production. Although steel slags have been used for arsenic removal from water, this process has not been systematically or integratively researched. In this study, the arsenic removal capacity and mechanism were investigated for carbon steel slag, stainless steel slag and Fe-modified stainless steel slag based on an in-depth study. The study also evaluated the potential utilization of different steel slag for regeneration. The maximum adsorption of arsenic on carbon steel slag, stainless steel slag and Fe-modified stainless steel slag was 12.20, 3.17 and 12.82 mg g?1 at 25 °C, respectively. The modification of stainless steel slag by FeC13 can generate more pore structures and larger surface areas, and 300 °C treatment produces the best regeneration efficiency. The ΔG values were negative for all of the steel slags, indicating the spontaneous nature of the adsorption process. The solution pH was a critical parameter for the removal of arsenic for steel slags. Under highly alkaline solution conditions, the mechanism of arsenic removal by carbon steel slag and stainless steel slag can be attributed to chemisorption, including chemical precipitation and coordination reactions, and under weakly alkaline solution conditions, electrostatic interaction and specific adsorption are the arsenic removal mechanisms by Fe-modified stainless steel slag. Regeneration of the Fe-modified stainless steel slag was better achieved than that of the other steel slags in the application of high-temperature treatment.  相似文献   

4.
The use of steel slag fines has been fully investigated and developed as it has similar chemical composition and mineralogy to that of Portland cement. Researchers from home and abroad have done lots of research on steel slag, such as its production, processing, properties, mechanical behavior, cementitious property and so on. This paper describes influence of water content on mechanical properties of improved clayey soil using steel slag and a series of tri-axial compression tests are carried out to study the influence of water content to the admixture of clayey soils and steel slag. Through the test data statistics and analysis, the basic rules of the mechanical properties of these mixed soils were gotten, especially, the optimum steel slag and water content. Through tri-axial compression tests, there are several kinds of specimen failure forms in different conditions of steel slag and water content. The stiffness of steel slag is larger than clayey soil, so the specimen with steel slag would break with an oblique angle whereas the clayey soil specimen would be compressed. Drawn from the experiment, while water content increases, cohesion c increases and internal friction angel φ decreases; however, in general, the maximum stress difference firstly increases, and then decreases. Under the same water content, with the curing period and steel slag content increase, cohesion c increases, internal friction angel φ decreases, however, the stress difference increases. By analyzing the specimen failure forms and the relations of stress difference and axial strain, the relations between stress difference max (σ1 ? σ3) and steel slag content and relations between the secant modulus E50 and steel slag content are gotten. It is concluded that when the water content is about 18 % and steel slag content is about 30 %, the stress difference and secant modulus E50 is larger than other cases. Therefore, in soft soil foundation treatment, such steel slag and water content could be chosen in order that the soil strength would be improved. So, judging from the results, the foundation settlement will be reduced by mixing appropriate steel slag and water content.  相似文献   

5.
Secondary Ca-Al silicates are used to constrain the P-T-x conditions of the very early post-magmatic stage of the intermediate to basic Hercynian plutonic complexes of Charroux-Civray (NW Massif Central, France) and Fichtelgebirge (NE Bavaria, Germany). The secondary Ca-Al silicates hydrogarnet, prehnite, pumpellyite, epidote and laumontite form lenses within unaltered or only slightly chloritized biotite. Hydrogarnet as the first occurring Ca-Al silicate phase crystallizes at temperatures above 340 °C. The common paragenesis prehnite + pumpellyite post-dates hydrogarnet and indicates rather narrow ranges of temperature (200-280 °C) and pressure (2-3 kbar). Laumontite is formed at the end of Ca-Al silicate crystallization (180-260 °C, 1-3 kbar), mostly in small fractures in association with prehnite and adularia. The observed crystallization sequence of the Ca-Al silicates and their stabilities define a retrograde alteration path for the plutonic rocks. The Ca-Al silicate assemblage results from an early pervasive alteration of the plutonic rocks by low XCO2 fluids during post-magmatic cooling. Subsolidus cooling starts at about 4 kbar at solidus temperatures as indicated by magmatic epidote stability, hornblende barometry and fluid inclusion data, and continues under slightly decreasing pressure (uplift) down to 2-3 kbar at 200-280 °C (prehnite-pumpellyite paragenesis). This shows that Ca-Al silicate assemblages may be a unique tool to constrain the P-T conditions of the subsolidus cooling of intermediate to basic plutonic bodies.  相似文献   

6.
The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the <2 mm-size fraction of surface composite slag material or crushed slag from at depth in piles 1 and 2 are mineralogically similar to the large surface slag fragments from those piles with the addition of phases such as feldspars, Fe oxides, and clay minerals that are either secondary weathering products or entrained from the underlying bedrock. Pile 3 slag contains mostly skeletal forsteritic olivine and Ti-bearing aluminian diopside, dendritic or fine-grained subhedral melilite, glass, euhedral spinel, metallic Fe, alabandite–oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al2O3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe2O3, K2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al2O3, CaO and S, and low in Fe2O3, K2O and SiO2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods.  相似文献   

7.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

8.
An experimental study of the effect of boron in the water saturated Q-Or-Ab-B2O3-H2O system has been performed at P=1 Kbar to provide experimental data and explain the role of boron in some late magmatic and early hydrothermal events. Experiments were conducted between 500° C and 800° starting from a gel, or a previously crystallized gel, and variable amounts of boron (0 to 18% B2O3) added to water. The phases obtained were: quartz, sanidine, albite, silicate liquid quenched to glass, and aqueous vapour phase. Boric acids, borates and isotropic low index materials were found in the quenched vapour phase. An aluminium silicate-like mineral, not yet fully identified, is also present.The solidus temperature of the Q-Or-Ab composition is lowered by 60° C when 5 wt. % B2O3 is added and by more than 130° C when 17wt. % B2O3 is added. Compositions of equilibrated silicate melts and vapours were obtained between 780° C and 750° C for various B2O3 concentrations. The vapour phase is B and Si rich. It is also enriched in Na with respect to K, and in alkalis with respect to Al. Its silicate solute content is higher than in experiments with pure water. The solubility of water is increased by the addition of boron in Q-Or-Ab melts. Microprobe data show that the melts equilibrated with vapour phases become hyperaluminous and more potassic than sodic. The partition coefficient of boron is in favour of the vapour (k D=B2O3% in melt/B2O3% in vapour=0.33±0.02). The effect of the interaction between the silicate phases and the vapour is discussed. Comparison is made between the behaviour of boron and that of chlorine and fluorine. Geological applications are also provided, which concern the influence of boron on minimum melting, on muscovite stability and on the hypersolvus-subsolvus transition.  相似文献   

9.
Geochemical criteria of the Moon’s composition as deficient in Fe and depleted in volatile components and the distribution of siderophile elements in the planet offer the possibility of correlating, under certain conditions, the origin of the Moon and its core from an initial material of composition close to CI carbonaceous chondrites. In order to verify the model of the percolation of liquid metallic Fe through a silicate matrix of chondritic composition at low degrees of melting, we have experimentally modeled Fe movement and deposition in the course of high-temperature centrifugation. The starting experimental mixture had the composition 85% Ol, 10% ferropicrite, and 5% Fe-S (95% Fe and 5% S); the experimental conditions were 4000 g “gravity”, T = 1440°C, Δ log fO2(IW) ~ ?5.5. In our experiments, Fe was segregated in systems with Fe sulfide and silicate melts at partial melting under reduced conditions and the deformation of the silicate framework. Our results indicate that the Moon could be produced from a material of composition close to CI carbonaceous chondrite.  相似文献   

10.
样品经硝酸-氢氟酸混合酸溶解后,用标准加入-原子吸收光谱法测定钢渣中的铁。实验探讨了钢渣的均匀性等干扰因素对结果的影响,并提出基体高、浓度高的样品稀释倍数过高误差越大,建议采用如旋转燃烧头、选择次灵敏线等降低仪器灵敏度的方法或采用标准加入法。并将标准加入法与X射线荧光光谱、电感耦合等离子体发射光谱、原子吸收光谱直接测定法进行比较,铁的实验结果分别为51.6%、54.2%、46.2%、16.6%,相对标准偏差分别为2.8%、5.3%、2.0%、2.3%。标准加入-原子吸收光谱法用于测定基体高、浓度高的样品是准确可靠的。方法可用于环境类实验室用水剂标准溶液进行钢渣类样品中元素的分析。  相似文献   

11.
标准加入-原子吸收光谱法测定钢渣中的铁   总被引:1,自引:1,他引:0  
刘琳娟  张琪  陆培培 《岩矿测试》2010,29(6):699-702
样品经硝酸-氢氟酸混合酸溶解后,用标准加入-原子吸收光谱法测定钢渣中的铁.实验探讨了钢渣的均匀性等干扰因素对结果的影响,并提出基体高、浓度高的样品稀释倍数过高误差越大,建议采用如旋转燃烧头、选择次灵敏线等降低仪器灵敏度的方法或采用标准加入法.并将标准加入法与X射线荧光光谱、电感耦合等离子体发射光谱、原子吸收光谱直接测定法进行比较,铁的实验结果分别为51.6%、54.2%、46.2%、16.6%,相对标准偏差分别为2.8%、5.3%、2.0%、2.3%.标准加入-原子吸收光谱法用于测定基体高、浓度高的样品是准确可靠的.方法可用于环境类实验室用水剂标准溶液进行钢渣类样品中元素的分析.  相似文献   

12.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

13.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


14.
砾钢渣抗液化特性试验研究   总被引:1,自引:0,他引:1  
陈化的钢渣作为土工回填材料是废弃钢渣循环利用的主要途径之一。按土的工程分类方法,将废弃钢渣划分为砾钢渣、粗钢渣和细钢渣。针对砾钢渣,考虑固结应力比、振动频率、围压和含砾量等影响因素开展动三轴试验研究。分析了砾钢渣的应力、应变和动孔隙水压力的特性,分析了砾钢渣试样的动强度与振动次数、动应变与振动次数、孔隙水压力与振动次数和动应力与动应变关系。采用Seed和Finn提出的饱和砂土动孔压计算模型分析砾钢渣的动孔压曲线类型,并与传统砂砾土的抗液化强度进行比较。得出砾钢渣的抗液化特性较好,工程中可以用砾钢渣替代传统的砂土、砂砾土、砂砾料和砂卵石作为回填料,解决砂砾资源日渐短缺的问题。  相似文献   

15.
Inclusions of mineral-forming environments in apatite-containing ijolites and magnetite–phlogopite–apatite ores in carbonatites were studied to elucidate the genesis of apatite mineralization in the Guli alkaline ultramafic carbonatite massif. Primary inclusions of carbonate–salt and carbonate melts have been discovered and studied. The carbonate–salt melt inclusions are of alkaline high-Ca composition and are enriched in P, Sr, SO3, and F (wt.%): CaO—30–40, Na2O—5–12, K2O—2–4, P2O5—1–3, SO3—1.5–3, and SrO—1–3. They also contain minor MgO, FeO, BaO, and SiO2 (tenths and hundredths of percent). The homogenization temperature of these inclusions is 850–970 °C. The carbonate inclusions contain predominant CaO (54–67 wt.%) and minor MgO, FeO, SrO, Na2O, and P2O5 (tenths of percent). Their homogenization temperature is 840–860 °C. Similar primary carbonate–salt and carbonate inclusions were found in garnet, and secondary ones were detected in silicate minerals (clinopyroxene and nepheline) of ijolites. Clinopyroxenes of ijolites also contain primary inclusions of alkaline ultramafic high-Ca melts similar in composition to melilitite-melanephelinites highly enriched in P, SO3, and CO2 (wt.%): SiO2—41–46, Al2O3—8–16, FeO—2–8, MgO—3–6, CaO—12–20, Na2O—2–9, K2O—1–6, P2O5—0.4–2.1, SO3—0.2–2.3, and Cl—0.02–0.35. According to the obtained data, apatite of the magnetite–phlogopite–apatite ores and ijolites of the Guli pluton crystallized from phosphorus-rich alkaline carbonate–salt melts at 850–970 °C. The generation of these melts was, most likely, due to the silicate–salt immiscibility in melilitite-melanephelinite melts highly enriched in salts, which occurred either at the final stages of clinopyroxene crystallization or during the formation of melilite. The presence of alkalies, S, F, and CO2 in spatially separated carbonate–salt melts contributed to the concentration and preservation of phosphorus in them at low temperatures, which led to the formation of apatite mineralization in ijolites and ore deposit in carbonatites.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

16.
Regional study on the impact of variations in input rainfall over groundwater quality and its suitability for utilitarian purposes is essential for its extraction and management. Water chemistry from 456 observations wells for 2007–2011 period in hard rock Basaltic terrain of Upper Godavari basin is supported with 8 field samples (in 2014) in this analysis. Based on mean annual rainfall (MAR), four narrow climatic zones are identified in the basin, defined as “humid” (MAR > 1600 mm), “sub-humid” (1600–1000 mm), “semi-arid” (1000–600 mm), and “arid” (MAR < 600 mm). NICB ratio (<±10%), and anionic percentages demarcated the polluted areas from rest “good data”, composing of 1818 samples. Hydrochemical facies are studied using Piper diagram, secondary alkalinity exceeded 50% and not one cation–anion pair exceeded 50%, and silicate–carbonate plot, arid zone nearer to silicate pole indicated the dominance of SiO2 in Ca/Na vs Mg/Na plot. These geochemical variations emphasize a detailed study on role of climatic gradient on groundwater suitability for different purposes, for groundwater extraction, and its management. Suitability of groundwater for drinking based on water quality indices (WQI) indicated 98% of the samples as suitable (WQI < 50%). TDS in humid zone is 150–500 and 500–1000 mg/L in rest of the zones with ~68% in permissible range, 15% as hard water (TDS > 600 mg/L) and not acceptable for drinking. Suitability of groundwater for irrigation is studied using sodium percentage (Na %), Wilcox diagram, sodium absorption ratio (SAR), US salinity diagram, residual sodium carbonate (RSC), permeability index (PI), Kelly’s ratio (KR), ancd magnesium absorption ratio (MgAR). Na % in four zones is < 60% and permissible for irrigation. Very few water samples fall in “doubtful to unsuitable” and “unsuitable” category of Wilcox diagram. Region is observed to have SAR < 6, indicating that water would not cause any problem to the soil and crop. Humid and sub-humid zones belonged to C1S1 and C2S1 categories (low and medium sodium), while semi-arid extended to C3S1 category (salinity hazard zone) in US salinity plot. RSC for all the three zones ranged from 1 to 1.5 meq/L, with 90–95% of the area safe for irrigation. Out of 1818 samples, 1129 belonged to class 2 of PI classification (PI ranging from 25 to 75%) while rest 689 samples had PI >75% (class 1). KR varied from 0.05 to 12.81, with 70–80% of the area having KR < 1. MgAR ratio ranged from 67% to 96%, with sub-humid, humid zones having higher Mg concentrations (increased salinity). Thus, 90% of the samples indicated non-alkaline water with 1% of normal alkalinity. Hence, the current study systematically analyzed the effect of precipitation and geology on groundwater quality and on its usability for various purposes. This stepwise procedure categorized the regions, and the same can be adopted for any regional hydrogeochemical studies.  相似文献   

17.
Acid mine drainage is a serious environmental problem throughout mining regions of the US and around the world. In Appalachia, reuse of steel slag from steel production as a source of alkalinity for treatment of acid mine drainage has become a common practice. In these systems, dubbed steel slag leach beds, relatively clean surface water is percolated through a bed of steel slag to add large amounts of alkalinity to the water before mixing it with acidic, metalliferous mine water. These beds do not operate consistently and their failure mechanisms are poorly understood. Using the experience of Raccoon Creek watershed in southern Ohio, the alkalinity distribution of the discharge of six steel slag leach beds is compared. Two of these beds are still functional, one has been abandoned and three are operating poorly. The difference in alkalinity distribution between these beds suggests that a carbonate-dominated alkalinity system is an indicator of a poorly performing steel slag leach bed, while a more even distribution between hydroxide, carbonate and bicarbonate may point to more ideal operating conditions. In eight laboratory column experiments, this evidence was then expanded upon by testing different mixed media substrates (differing mixes of steel slag, wood chips and river gravel) to see which provided the most ideal alkalinity distributions. The columns that had steel slag mixed either with wood chips or wood chips and river gravel outperformed the column with slag only in terms of alkalinity distribution, perhaps due to microbial processes or increased hydraulic conductivity without significant added calcium or carbon that could drive calcium carbonate precipitation within the beds and causing them to fail.  相似文献   

18.
《Applied Geochemistry》2004,19(7):1039-1064
Slag collected from smelter sites associated with historic base-metal mines contains elevated concentrations of trace elements such as Cu, Zn and Pb. Weathering of slag piles, many of which were deposited along stream banks, potentially may release these trace elements into the environment. Slags were sampled from the Ely and Elizabeth mines in the Vermont copper belt, from the copper Basin mining district at Ducktown, Tennessee and from the Clayton silver mine in the Bayhorse mining district, Idaho, in the USA. Primary phases in the slags include: olivine-group minerals, glass, spinels, sulfide minerals and native metals for Vermont samples; glass, sulfide minerals and native metals for the Ducktown sample; and olivine-group minerals, clinopyroxenes, spinels, sulfide minerals, native metals and other unidentified metallic compounds for Clayton slag. Olivine-group minerals and pyroxenes are dominantly fayalitic and hedenbergitic in composition, respectively and contain up to 1.25 wt.% ZnO. Spinel minerals range between magnetite and hercynite in composition and contain Zn (up to 2.07 wt.% ZnO), Ti (up to 4.25 wt.% TiO2) and Cr (up to 1.39 wt.% Cr2O3). Cobalt, Ni, Cu, As, Ag, Sb and Pb occur in the glass phase, sulfides, metallic phases and unidentified metallic compounds. Bulk slag trace-element chemistry shows that the metals of the Vermont and Tennessee slags are dominated by Cu (1900–13,500 mg/kg) and Zn (2310–10,200 mg/kg), whereas the Clayton slag is dominated by Pb (63,000 mg/kg), Zn (19,700 mg/kg), Cu (7550 mg/kg), As (555 mg/kg), Sn (363 mg/kg) and Ag (200 mg/kg). Laboratory-based leach tests indicate metals can be released under simulated natural conditions. Leachates from most slags were found to contain elevated concentrations of Cu and Zn (up to 1800 and 470 μg/l, respectively), well in excess of the acute toxicity guidelines for aquatic life. For the Idaho slag, the concentration of Pb in the leachate (11,000 μg/l) is also in excess of the acute toxicity guideline. Geochemical modeling of the leachate chemistry suggests that leachates from the Vermont, Tennessee and Clayton slags are saturated with amorphous silica and Al hydroxide. Therefore, the dissolution of silicate and oxide phases, the oxidation of sulfide phases, as well as the precipitation of secondary phases may control the composition of leachate from slags. The presence of secondary minerals on slag deposits in the field is evidence that these materials are reactive. The petrographic data and results of leaching tests from this study indicate slag may be a source of potentially toxic metals at abandoned mine sites.  相似文献   

19.
The effect of a 7-mo drought (La Niña 1988) was evaluated on pelagic properties in the large Patos Lagoon (30°12′–32°12′S, 50°40′–52°15′W). From December 1987 to December 1988, surface water was sampled along the longitudinal axis of the lagoon for temperature (10–29°C), salinity (0–31.4), dissolved inorganic phosphate (0.02–4.73 μM), nitrate (0.05–66.25 μM), nitrite (0.01–3.54 μM), ammonium (0.09–33.19 μM), silicate (1.11–359.20 μM), phytoplankton chlorophylla (chl; 0.4–41.2 mg m?3), primary production (gross PP 1.72–161.82 mg C m3 h?1; net PP 0.04–126.19 mg C m3 h?1), and species composition and abundance (42–4,961 ind ml?1). In the wet season the whole system acted as a river and light availability limited phytoplankton growth. During the drought from February to August monthly freshwater runoff was low and the inflow of marine water to the southern sector generated spatial variability of the analyzed properties and five functional areas were recognized. The northernmost Guaíba River (1) presented low light availability and phytoplankton chl concentration compared to the northern limnetic area (2) (chl mean 13.3 μg I?1; max 41.2 μg I?1; gross PP mean 52.6 mg C m3 h?1), which acted as a biological filter removing dissolved inorganic nutrients. Silicate concentration was strongly diminished in this area due to diatom uptake (Aulacoseira granulata, 9,330 cells ml?1). In the northern limnetic and central oligohaline (3) areas, phytoplankton biomass was controlled by light but nitrogen also played a limiting role. In the southern area (4) that is under marine influence, low chl concentration (mean 4.5 μg I?1) and gross PP (mean 28.1 mg C m3 h?1) coincided with co-limitation of nitrogen and light while the channel to the ocean (5) was strongly light limited. This study demonstrated that low light and high silicate input had a buffer effect at Patos Lagoon, hampering negative expression of cultural eutrophication. The main effect during the drought period occurred in the northern limnetic region, where low silicate values due to diatom uptake led to higher cyanobacteria abundance, and enhanced mineralization occurred in the central oligohaline lagoon. Increased rainfall resulted in light limitation and decreasing primary production in the entire freshwater lagoon, and the adjacent coastal region benefited from nutrient enrichment.  相似文献   

20.
Calcite (CaCO3), dolomite [CaMg(CO3)2], silicate dissolution, ion-exchange and reverse ion-exchange reactions are the predominant processes influencing groundwater quality in the Savelugu?CNanton District. The main objective of this study is to characterize groundwater and delineate water?Crock interactions responsible for the chemical evolution of groundwater in the District. Eighty-one (81) boreholes were sampled for quality assessment. Results showed that, the pH of the boreholes are slightly acidic to basic ranging from 6.1?C8.3?pH units. Conductivity values are low to high ranging from 147?C23,200???S/cm with, 23.5?% of groundwater within the study area being either brackish (1,500?C5,000???S/cm) or saline (>5,000???S/cm) and therefore, unsuitable for potable purposes. TDS values in groundwater varied widely, ranging from 62?C11,900?mg/L. 61.7?% of groundwater within the study area are fresh (TDS?<?500?mg/L). The chemical constituents generally, have low concentrations and are within the WHO (Guidelines for drinking water quality. Revision of the 1993 Guidelines. Final Task Group Meeting. Geneva, 2004) Guideline values. The relative abundance of cations and anions in the groundwater are in the order: Ca2+?>?Na+?>?Mg2+?>?K+ and HCO3 ??>?Cl??>?SO4 2??>?NO3 ? respectively. Multivariate statistical analysis showed expected process-based relationship derived mainly from the geochemical and biochemical processes within the aquifer. Hydrochemical facies using piper plot of major ions showed one major hydrochemical water type. The Ca?CMg?CHCO3 water type. Due to the high cost of drilling of boreholes coupled with the high percentage (×1?%) of people without access to potable water in the Northern Region, it is recommended that the Government of Ghana and other stakeholders within the Water Sector take immediate measures to reduce (to recommended limits for potable uses) the levels of dissolved solids either by installing Reverse Osmosis equipments on such boreholes or employ other relatively known cheaper methods to reduce the dissolved solids to recommended limits. High yielding boreholes with hydrochemical parameters within WHO guideline limits in the Savelugu?CNanton District could also be mechanized to serve a wider area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号