首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
主要研究磁衰减对具有两成分模型的脉冲星自转减速的作用。利用分析方法研究了两成分模型的脉冲星在磁衰减制动力矩作用下,两成分的自转角速度对具有两成分的蟹状星云脉冲星(PSR0531+21, Crab)和船帆座脉冲星(PSR0833-45, Vela)在磁衰减作用下的数值计算。结果表明:两个脉冲星的自转角速度逐年减慢,脉冲星PSR0531+21每年减速-0.171 0 rad/s,而脉冲星PSR0833-45每年减速-0.007 1 rad/s。最后讨论了文中得到的结果并给出在两成分模型中存在磁衰减的结论。  相似文献   

2.
为了解释间歇脉冲星PSR B1931+24在射电噪比射电宁静状态下更大的自转减慢率和模拟蟹状星云脉冲星的自转演化,建立同时考虑了具有不同加速电势的核区和环区的环加速间隙下的星风制动模型.其中对于PSR B1931+24通过计算得到它的磁场强度和磁倾角,并且预言了其理论制动指数.对于蟹状星云脉冲星,通过计算得到它的磁场强度和磁倾角,还计算得到其制动指数随周期的演化和它在周期-周期导数图上的自转演化.相比于真空加速间隙、外加速间隙等,环加速间隙也同样能够适用于星风制动模型.  相似文献   

3.
脉冲星具有极强的磁场,由于其磁轴与自转轴并不完全重合,这使脉冲星存在电磁辐射.脉冲星靠消耗自转能来弥补辐射出去的能量,从而导致自旋速度的逐渐放慢.根据理论推导,对蟹状星云脉冲星(Crab)的初始周期进行预测,并推导出在未来任意时刻,在电磁辐射的影响下,其脉冲星自旋周期的演化规律.由于脉冲星的质量分布可能存在四极矩,引力波辐射也会使得脉冲星的旋转速度减小,因此进一步分析Crab脉冲星在引力波影响下自旋周期的变化.最后将两种辐射机制模型结合,对脉冲星在两种辐射机制共同作用下自旋周期的演化进行分析.  相似文献   

4.
关于中子星辐射部位的一些探讨   总被引:1,自引:0,他引:1  
本文试图讨论脉冲星辐射源的形成,指出光速圆柱附近,通过“磁湮没”产生高能粒子束,从而可形成脉冲辐射。本文指出: (1)光速圆柱附近非共转层中由于较差自转磁能会迅速积聚,积聚的功率和积聚区的尺度符合观测的要求;(2)上述磁能可通过“磁湮没”进行释放,“磁湮没”中产生的高能粒子束的速率及尺度符合观测对射束的要求;(3)辐射区粒子数密度可以远大于G-J模型中的值,与文[2]由观测对PSR0531+21的辐射区提出的要求一致;(4)γ射线与射电脉冲周期可有所不同。  相似文献   

5.
研究了磁制动作用下太阳在主序阶段质量流失对自转角速度在主序前半程和后半程随时间的演变的影响.根据推导给出了理论结果.理论结果表明:磁制动作用对自转角速度的影响在主序前半程比后半程影响更大.计算了在主序前半程(1×10~9–5×10~9yr)和后半程(5×10~9–10×10~9yr)内角速度演变的数值.数值结果表明:无论在主序前半程还是在后半程自转角速度随时间逐渐减慢.最后详细讨论了给出的理论和数值结果.  相似文献   

6.
毫秒脉冲星   总被引:3,自引:0,他引:3  
毫秒脉冲星PSR1937 214的发现是近几年天体物理学中的一次重要事件。本文介绍了该星的发现史和主要观测事实。该星自转周期为1.557806449023毫秒,是转动最快的脉冲星。周期变率为1.24×10~(-19)秒/秒。在它的周围没有明亮的超新星遗迹。这颗脉冲星的引人注目的特征是磁场低和在P—P图上位置独特。文中还评述了解释这颗脉冲星的四种模型;(1)起源于吸积X射线双星的中子星,通过从伴星吸积物质而加速到毫秒周期;(2)Michel和Dessler提出的盘模型脉冲星中的普通一员;(3)双中子星并合体;(4)辐射年龄小的脉冲星。最后一种可能性是本文作者提出的。根据具有相似特征的脉冲星倾向于分布在同一条PP~(-5)等值线及可按等值线排成演化序列的事实,作者按光速圆柱磁能衰减来定义脉冲星辐射年龄t:B/8π∝PP~(-5)=C_0exp(-2t/τ)(τ为磁能衰减时标),井据此认为PSR1937 214和蟹状星云脉冲星、船帆座脉冲星都是辐射年轻的。  相似文献   

7.
利用中国科学院新疆天文台南山观测站26m射电望远镜, 在中心频率1556MHz, 对Crab脉冲星(PSR B0531+21)进行了长达12.6h的连续观测, 观测带宽为512MHz, 时间分辨率为32μs, 研究了巨脉冲辐射的等待时间分布特征. 观测共探测到2097个信噪比大于10的巨脉冲, 对应的流量密度大于100Jy. 巨脉冲的爆发率表现为高度的间歇性, 在较短的时间内具有较高的爆发率, 在相对长的宁静期内巨脉冲的爆发率较低, 尤其是中间脉冲相位内的巨脉冲爆发. 相邻两个巨脉冲的等待时间分布表现为幂律分布特征, 可以用一个非稳态的泊松过程进行模拟, 这表明巨脉冲的爆发是一种独立的随机事件. 此外, 主脉冲和中间脉冲相位上的巨脉冲具有不同的等待时间分布特征, 这意味着脉冲星不同磁极的巨脉冲辐射机制可能是不同的. 这些观测结果对于理解脉冲星的射电辐射机制具有重要意义.  相似文献   

8.
本讨论了脉冲星磁偶极辐射模型所取得的成就和存在的困难,针对不足之处对磁偶极模型进行修正。从统计上得到修正因子与周期变率的幂律关系。由修正后的磁场强度得出其衰减时标大于10^8年,这与有关的理论研究结果一致。修正后的磁偶极模型给出周期变率和周期的新关系为P∝P^-3图中加速线以上的资料的统计拟合方程一致。  相似文献   

9.
本文讨论了脉冲星磁偶极辐射模型所取得的成就和存在的困难,针对不足之处对磁偶极模型进行修正。从统计上得到修正因子与周期变率的幂律关系。由修正后的磁场强度得出其衰减时标大于108年,这与有关的理论研究结果一致。修正后的磁偶极模型给出周期变率和周期的新关系为р∝P-3,这恰好和р-P图中加速线以上的资料的统计拟合方程一致。  相似文献   

10.
综述了前人对于单个脉冲星磁场的起源和演化的研究结果及其最新进展。脉冲星磁场的起源有多种模型,其所对应的初始磁场有两种位形:磁场束缚在核内和磁场束缚在壳层中。脉冲星的磁场如何演化,没有一致的结论。有各种观测证据可能直接或间接表明磁场的演化行为,如根据特征年龄和运动学年龄的差异可以推断出脉冲星磁场按指数规律衰减,而根据特征年龄与超新星遗迹年龄的差异或几颗年轻脉冲星的制动指数可以认为年轻脉冲星的磁场可能是增强的。脉冲星的样本合成研究(数值模拟)是研究脉冲星磁场演化的重要方法。模拟结果表明,假定脉冲星磁场按指数衰减,特征衰减时标必须为10^7yr或更长。而壳层中磁场的欧姆耗散模型数值计算显示脉冲星磁场演化行为因冷却模型和状态方程的取法不同而异,但最终无明显的衰减。由自转变慢诱导的脉冲星核内部磁场向壳层中扩散模型的计算表明脉冲星磁场的衰减只发生在10^7-10^8yr这段时间内,磁场衰减1-2个量级。  相似文献   

11.
脉冲星具有非常稳定的累积脉冲轮廓,特别是毫秒脉冲星.前人研究发现一些脉冲星的累积脉冲轮廓会呈现出不稳定性.研究了毫秒脉冲星PSR J1022+1001累积脉冲轮廓的稳定性问题,该脉冲轮廓有两个峰,发现其峰值比随时间有明显的变化.通过分析,认为该毫秒脉冲星累积脉冲轮廓的不稳定性主要是由于脉冲轮廓随观测频率变化,同时星际闪烁造成不同频率上流量密度变化.研究还发现,也有少部分累积脉冲轮廓的变化可能是脉冲星内禀或其他因素所引起的.  相似文献   

12.
研究了高斯辐射成分在可视点所画出轨迹上的分布,这个可视点因脉冲星的转动而作非匀速度运动.通过假设辐射区域围绕磁轴均匀分布,一个高斯辐射成分便对应于可视轨迹划过的一个辐射区域.因为演示辐射区域在可视轨迹上是不均匀的分布,因此高斯成分沿轨迹也是不均匀的,而高斯成分的密度在磁轴与视线距离最近时为最大.高斯成分的分布取决于脉冲星的两个角度:旋转轴和视线之间的夹角,以及磁轴和旋转轴之间的倾角.基于此模型,一个脉冲星平均轮廓中观察到的多个高斯成分便对应于可视轨迹在特定的转动相位范围内的辐射区域.演示了脉冲星旋转的近侧和远侧的相位,分别对应的主脉冲和中间脉冲,两者高斯成分的数量和分布是不同的.而且还发现,沿可视轨迹上的辐射区域总数与围绕磁轴的辐射区域的总数是不同,并且预测的辐射区域数目会因忽略可见点的运动而明显不同.拟合表明脉冲星轮廓的高斯成分的形状和数量可能与实际构成轮廓的成分的形状和数量不同.以PSR B0826–34的辐射为例,并假设辐射来自单一磁极.  相似文献   

13.
1984年5月23日,我们用自己研制的HAPI-1硬X射线望远镜,在高空气球上对蟹状星云及其脉冲星辐射的高能X射线进行了观测。 HAPI-1望远镜的主体部分是一个由碘化钠和碘化铯组成的复合晶体探测器。直径15cm,主晶体CsI(T1)厚0.5cm,下置5cm厚的NaI(T1),用来屏蔽大气反照γ射线背景和抑制康普顿散射成分。两个晶体中的信号进入同一个光电倍增管,经脉冲形状甄别电路后被分开。再经数据获取电路,便可得一组CsI·NaI  相似文献   

14.
2009年11月,云南天文台射电天文研究团组采用40 m射电望远镜以及基于DBBC(Digital Base Band Conveter)和Mark 5B的VLBI记录系统对PSR J0835-4510和PSRJ0332+5434进行了观测。观测选用S波段右旋圆极化信号,起始频率为2 206.99 MHz,总带宽为32 MHz。对数据进行相干消色散和平均后,得到PSR J0332+5434的单脉冲图像和两颗脉冲星的平均脉冲轮廓。由平均轮廓的展宽随时间的变化关系,对脉冲星的视周期作了一定修正后,得到信噪比更高的平均轮廓图。最后对轮廓的信噪比随时间的变化作了初步分析,由此可了解整个系统在观测时的稳定性。  相似文献   

15.
本研究了中子星的热演化,自转演化和磁场演化的相互影响,考虑了一个自洽模型,中子星因磁偶极辐射而自转减慢,在内部产生某些加热过程,中子星磁场通过壳层的欧姆耗散来衰减。结果表明,磁场衰减提高了加热过程的重要性,相反,加热效应减慢了磁衰减,因此可以得出,中子星的热,自转和磁场也许不是独立演化的,不仅如此,这些演化与初始条件有关,因此,人们也许可以从射电和X射线观测对脉冲星年龄,初始磁场和周期给出某些限  相似文献   

16.
本文研究了中子星的热演化、自转演化和磁场演化的相互影响.考虑了一个自洽模型:中子星因磁偶极辐射而自转减慢,在内部产生某些加热过程,中子星磁场通过壳层的欧姆耗散来衰减.结果表明,磁场衰减提高了加热过程的重要性;相反,加热效应减慢了磁衰减.因此可以得出,中子星的热、自转和磁场也许不是独立演化的.不仅如此,这些演化与初始条件有关,因此,人们也许可以从射电和X射线观测对脉冲星年龄、初始磁场和周期给出某些限制.  相似文献   

17.
利用公开数据研究了PSR J1906+0746的主脉冲和中间脉冲的辐射特征。通过对各段时期的平均脉冲轮廓进行高斯拟合,得到了对应的10%峰值脉冲宽度和峰值流量密度,进而研究了与碰撞角之间的关系。结果表明,主脉冲辐射束的主要可见部分可由一束有确定磁经度角范围的磁流管产生,而中间脉冲则来自于环绕磁轴的磁力线上的辐射。现有的扇形束模型可以较好地解释主脉冲的特征,但难以解释中间脉冲的辐射特征。中间脉冲的特征要求改进扇形束模型,在假设磁轴四周的磁力线均有辐射的情况下,通过合理选择模型参数模拟观测到的条形辐射束。  相似文献   

18.
在内激波伽玛暴(GRB)模型下,中心能源喷出一系列质量相当但整体Lorentz 因子相差悬殊的物质壳层,这些先后快慢的壳层发生激烈的碰撞并产生相对论性的激波,壳层中的电子被激波加热后通过同步辐射和逆康普顿散射发射高能γ光子.对于能量高达GeV的高能光子(观测者系)可能因为γ-γ碰撞产生电子对而被火球吸收.Pilla和Leob数值计算发现产生的电子对数目远高于火球本身的电子数目,Li等人最近也得到了类似的结果并以此来解释早期余辉中缺少光学闪.通过解析研究该过程中电子对的产生与湮灭随时间的演化后,发现对于一个典型的pulse,同步高能部分产生的e±数目早期较多,湮灭率也高;在后期由于受到最大同步辐射频率的限制,该成分不再对e±的产生有贡献.与之不同,逆康普顿散射成分对e±的产生的贡献近似与pulse的持续时标成正比.在典型的参数范围下,两种成分共同作用产生的电子对数目可达原火球携带的电子数目的10来倍.由于所产生的e±的Lorentz因子较小,相应的同步辐射不会影响到观测谱(至少在BATSE探测器的能段是这样),但再次逆康普顿散射后则可能影响到观测谱.由于电子对的质量远比质子质量小,所以对后期的火球动力学演化的影响不大.至少对于均匀介质环境,电子对的存在对于早期余辉的光学辐射影响不大.  相似文献   

19.
我们在文[1]里对磁弧剪切作了数值解,得到了剪切速度ω和磁场B_z的分析解,但对二维速度(u,v)的振幅占δ′/ζ仅有只依赖于时间的近似解。本文在密度为常数条件下得到了磁弧剪切在线性演化阶段的较精确的解析解,比较了密度为常数和密度重力分层两种情形下的数值解,证实当β(=气压/磁压)很小(量级为10~(-2))时两者差别不大,因此本文结果近似可用于密度不为常数的实际太阳大气中的磁弧剪切动力学过程。解析解的主要结果是导出振幅δ′/ζ的高度依赖关系:随着时间增加,振幅δ′/ζ随高度下降越来越慢。这导致磁弧顶越升越高而脚根基本上不朝外移动,这样闭合的磁弧将有可能逐渐变为开场。  相似文献   

20.
考虑到模型参量随脉冲数的变化,推导出13C辐射燃烧的低质量AGB星s-过程核合成模型中子辐照量分布的计算方法,该方法具有普适性和简洁性.利用该方法,计算了3 M☉、太阳金属丰度恒星模型的中子辐照量分布.结果表明,若合理假设13C薄层内中子数密度均匀分布,则辐射核合成模型最终的中子辐照量分布趋近于指数分布.对于初始质量一定、金属丰度一定的恒星模型,平均中子辐照量τ0与每个脉冲的中子辐照量△τ存在确定的关系:τ0=0.434λ(q1,q2…qmmax+1,r1,r2…rmmax+1)△τ,式中mmax是带挖掘的脉冲总数,比例系数λ(q1,q2…qmmax+1,r1,r2…rmmax+1)可通过对最终中子辐照量分布的指数拟合得到.该式从中子辐照量分布角度定量地将经典模型和辐射s-过程核合成模型统一起来,使经典模型能为恒星模型核合成数值计算提供指导和约束.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号