首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In order to describe the composition and crystallinity of the initial (parental) magma of the Partridge River intrusion of the Keweenawan Duluth Complex, and thereby understand the mode of emplacement and solidification of the intrusion, we have applied a numerical simulation technique called geochemical thermometry (Frenkel et al. 1988). The parental magma was a low-alumina, high-Ti-P olivine tholeiite similar to typical Keweenawan low-alumina, high-Ti-P basalts associated with the Duluth Complex and from the nearby Portage Lake area of the Lake Superior region. The parental magma was emplaced as a crystal-liquid suspension, followed by chilling of an evolved, leading edge ferrodioritic liquid in the basal zone of the intrusion. The conditions of emplacement at the present crustal location were 1,150°C, 2 kbar, and f O 2 slightly above the wustite-magnetite (WM) buffer. The main differentiation process after emplacement was the sorting and redistribution of plagioclase and olivine crystals on a local scale accompanied by less efficient convection and minor settling of olivine. Calculated crystallization sequence for the parental magma is olivine+plagioclase (1,240°C)olivine+plagioclase+magnetite (1,146°C, WM+0.5)olivine+plagioclase+magnetite+augite (1,140°C, WM+0.5). The calculated compositions of the cumulus olivine and plagioclase in equilibrium with the parent magma at 1,150°C are Fo66.7±1.1 and An64.5±2.5, respectively, and are similar to the estimated average composition of primary olivine (Fo69.1±2.8) and the average composition of plagioclase core (An66.3±2.8) measured in drill core samples through the intrusion (Chalokwu and Grant 1987).  相似文献   

2.
The Potato River intrusion is a Keweenawan (1100 Ma) mafic plutonemplaced in Keweenawan volcanics and earlier Proterozoic metasedimentaryrocks along the southeastern flank of the Lake Superior syncline.It comprises the following lithostratigraphic zones: a thinto absent Border zone of altered olivine gabbro; a Lower zoneof olivine gabbro; a Picritic zone of picrite and troctolite;a Middle zone of olivine gabbro and leucogabbro; an Upper zoneof quartz leucogabbro and ferrogabbro; and a Roof zone of granophyricand granitic rocks. Fractional crystallization is evident fromcompositional changes in the rocks and cumulus minerals withstratigraphic height. Elements concentrated in the cumulus mineralsolivine and plagioclase (Mg, Fe2+, Al, Ca, Ni, Co, Cr, Sr) decreasewith height; elements concentrated in the trapped liquid (Na,K, La, Y, Zr, Nb, Rb, Ba) increase with height; and other elements(Ti, Fe3+, P, Ga, V, Sc, Cu, Zn) show complicated behavior relatedto the appearance of additional cumulus phases such as clinopyroxene,Fe-Ti oxides, and apatite. Lower zone rocks contain some sulfide,probably from sulfur derived from the country rock, and theUpper zone has sulfides probably precipitated from an immisciblesulfide liquid. The sulfide-bearing rocks have similaritiesto those of other intrusions, such as Bushveld, Stillwater,and Skaergaard. The picritic and troctolitic rocks of the Picritic zone indicatethat the intrusion was open to additional injections of maficmagma. Roof zone granophyric rocks are residual liquids intrudedalong the upper margin of the intrusion during regional tilting,but Roof zone granitic rocks are probably melted country rock.An attempt is made to estimate by reverse stratigraphic summationthe compositional path of the magma that solidified above thePicritic zone. The first compositions are highly aluminous,which suggests that the upper part of the intrusion has beenenriched in plagioclase by convection-aided crystal sorting.A complementary unit of mafic rocks is not exposed, but it couldbe present down dip. Some of the later compositions are similarto typical Keweenawan high-Al tholeiites. The magma did notundergo extreme iron enrichment, probably because of oxygenfugacity buffering.  相似文献   

3.
Petrology of the Partridge River Intrusion, Duluth   总被引:2,自引:1,他引:2  
Drill core DDH-221 was drilled for the Minnamax Project by AMAX Exploration, Inc., as part of the exploration for Cu-Ni sulfidesin the basal rocks of the northwestern margin of the DuluthComplex. The drill core intersects 525 m of the Partridge RiverIntrusion before passing into the Virginia Formation footwall.The rocks in the drill core comprise plagioclase and olivinecumulates, with troctolite and olivine gabbro as the most commonrock types. Sulfide- and oxide-bearing gabbros are present inthe lowest 100 m of the core where decreases in the crystalsizes of plagioclase and olivine, and the appearance of ophitictextures adjacent to the footwall, indicate that the chilledmargin of the intrusion has been preserved (Chalokwu & Grant,1990). The concentrations of incompatible elements in the wholerocks and the iron contents of olivine and pyroxenes all increasesharply in the lowest 100 m of the drill core (Chalokwu &Grant, 1990), and are interpreted as the downward increase inintercumulus liquid now preserved as intercumulus phases, andthe reaction of this liquid with olivine and pyroxenes. Mass, balance calculations for rocks containing widely differentvolumes of intercumulus phases show that the intercumulus liquidwas a chemically uniform ferrodiorite that can be derived fromKeweenawan high-alumina olivine tholeiite by plagioclase (An63),clinopyroxene (En50Fs10Wo40), and olivine (Fo71) fractionation. Initial 87Sr/86Sr values for plagioclase range between 0–704764and O-706335, with the highest values occurring adjacent tothe footwall Virginia Formation, and the lowest at intermediatedepths in the core. These variations are similar to 87Sr/86Srvalues reported earlier by Grant & Moiling (1981) From theadjacent core DDH-295, although the values are all greater thanpublished initial ratios for the least altered Keweenawan lavas.We attribute the isotopic variations in core DDH-221 to isotopicheterogeneities in the Partridge River Intrusion magmas, andto limited assimilation of the Virginia Formation within 50m of the footwall. Rare-earth and other trace elements in the intercumulus liquidfrom core DDH-221 have similar distributions to the same elementsin Keweenawan basic to intermediate lavas. We conclude that the rocks of the Partridge River Intrusionsampled in drill core DDH-221 comprise a mechanical mixtureof cumulus plagioclase and olivine and intercumulus liquid thatwere not in equilibrium with each other, and that the intercumulusliquid was broadly consanguineous with Keweenawan high-aluminaolivine tholeiite lavas, but was modified to a greater extentby assimilative exchange with continental crust. After emplacement,the crystal-liquid mixture was modified by flotation of thecumulus plagioclase out of the basal zone, and by limited —but not ubiquitous — assimilation of footwall VirginiaFormation.  相似文献   

4.
新疆东天山黄山东岩体橄榄石成因意义探讨   总被引:12,自引:6,他引:6  
黄山东岩体位于新疆东天山造山带中段,由四次岩浆侵入形成:第一次侵入形成了岩体上部的橄榄辉长岩、角闪辉长岩和闪长岩,构成岩体的主体;第二次侵入形成辉长苏长岩,呈岩墙状分布于岩体西端和西北部;第三次侵入岩石为斜长二辉橄榄岩,位于岩体下部,为主要的赋矿岩石;第四次侵入岩石为底部角闪辉长岩。橄榄石为第三次侵入的斜长二辉橄榄岩和第一次侵入的橄榄辉长岩主要造岩矿物之一,橄榄石的镁橄榄石牌号(Fo)值介于68.5~82.5之间。其中含硫化物斜长二辉橄榄岩中的橄榄石具有较高的Fo值(79.7~82.5);斜长二辉橄榄岩中橄榄石的Fo值为78.3~79.9;而基性程度较低的橄榄辉长岩中橄榄石具有较低的Fo值(68.5~72.2)。利用橄榄石矿物成分计算得出黄山东岩体母岩浆Mg#(Mg2+/(Mg2++Fe2+))为0.59,为原生玄武质岩浆经历结晶分异作用形成。模拟计算结果显示黄山东岩体不含矿岩石中橄榄石是母岩浆经过2%的橄榄石结晶分异且硫达到饱和后,在硫化物熔离的同时岩浆发生橄榄石结晶而形成,并且橄榄石︰硫化物≈50︰1,部分橄榄石成分投点在橄榄石结晶和硫化物熔离的模拟曲线右下侧,指示它们可能受到晶间硅酸盐熔浆作用的影响。含硫化物斜长二辉橄榄岩中Fo值与Ni含量呈负相关关系,说明橄榄石与硫化物熔体之间发生了Fe-Ni交换反应。  相似文献   

5.
Nickel-copper sulfide deposits occur in the basal unit of the Partridge River Intrusion, Duluth Complex (Minnesota, USA). Many lines of evidence suggest that these sulfides are formed after assimilation of the proterozoic S-rich black shales, known as the Bedded Pyrrhotite Unit. In addition to S, black shales are enriched in Te, As, Bi, Sb and Sn (TABS) and the basaltic magma of the intrusion is contaminated by the partial melt of the black shales. The TABS are chalcophile and together with the platinum-group elements, Ni and Cu partitioned into the magmatic sulfide liquid that segregated from the Duluth magma. The TABS are important for the formation of platinum-group minerals (PGM) thus their role during crystallization of the base metal sulfide minerals could affect the distribution of the PGE. However, the concentrations of TABS in magmatic Ni-Cu-PGE deposits and their distribution among base metal sulfide minerals are poorly documented. In order to investigate whether the base metal sulfide minerals host TABS in magmatic Ni-Cu-PGE deposits, a petrographic and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) study has been carried out on base metal sulfide and silicate phases of the Partridge River Intrusion, Duluth Complex.Petrographic observations showed that the proportions of the base metal sulfide minerals vary with rock type. The sulfide assemblage of the least metamorphosed Bedded Pyrrhotite Unit from outside the contact metamorphic aureole consists of pyrite with minor pyrrhotite plus chalcopyrite (<5%), whereas within the contact aureole the sulfide assemblage of the Bedded Pyrrhotite Unit rocks consists dominantly of pyrrhotite (>95%) with small amount of chalcopyrite (<2%). The sulfide mineral assemblage in the xenoliths of the Bedded Pyrrhotite Unit and in the mafic rocks of the basal unit contains two additional sulfides, pentlandite and cubanite.Our LA-ICP-MS study shows that sulfides of the Bedded Pyrrhotite Unit are rich in TABS; consistent with these S-rich black shales being the source of TABS that contaminated the mafic magma. Most of the TABS are associated with sulfides and platinum-group minerals in the rocks of the Bedded Pyrrhotite Unit from the contact aureole, the Bedded Pyrrhotite Unit xenoliths and the mafic rocks of the Duluth Complex. In addition to these phases the laser maps show that silicate phases, i.e., orthopyroxene and plagioclase contain Sn and Pb respectively. In contrast, in the least metamorphosed samples of the Bedded Pyrrhotite Unit from outside the contact aureole although the pyrite contains some TABS mass balance calculations indicates that most the TABS are contained in other phases. In these rocks, galena hosts significant amounts of Te, Bi, Sb, Sn and Ag and few very small grains of Sb-rich phases were also observed. The host phases for As were not established but possibly organic compounds may have contributed.  相似文献   

6.
The Uitkomst complex in eastern Transvaal, South Africa, is a mineralized, layered ultrabasic to basic intrusion of Bushveld complex age (2.05–2.06 Ga) that intruded into the sedimentary rocks of the Lower Transvaal Supergroup. The complex is situated 20 km north of Badplaas. It is elongated in a northwesterly direction and is exposed over a total distance of 9 km. The intrusion is interpreted to have an anvil-shaped cross-section with a true thickness of approximately 800 m and is enveloped by metamorphosed and, in places, brecciated country rocks. Post-Bushveld diabase intrusions caused considerable vertical dilation of teh complex.The complex consists of six lithological units (from bottom to top): Basal Gabbro, Lower Harzburgite, Chromitiferous Harzburgite, Main Harzburgite, Pyroxenite and Gabbronorite. The Basal Gabbro Unit, developed at the base of the intrusion and showing a narrow chilled margin of 0.2 to 1.5 m against the floor rocks, has an average thickness of 6 m and grades upwards into the sulphide-rich and xenolith-bearing sequence of the Lower Harzburgite Unit. The latter unit averages 50 m in thickness and is gradationally overlain by the chromite-rich harzburgite of the Chromitiferous Harzburgite Unit (average thickness 60 m). Following on from the Chromitiferous Harzburgite Unit is the 330 m thick Main Harzburgite Unit. The Pyroxenite and Gabbronorite Units (total combined thickness of 310 m) form the uppermost formations of the intrusion. The three lower lithological units, Basal Gabbro to Chromitiferous Harzburgite, are highly altered by late magmatic, hydrothermal processes causing widespread serpentinization, steatitization, saussuritization and uralitization.Field relations, petrography and mineral and whole rock chemistry suggest the following sequence of events, The original emplacement of magma took place from northwest to southeast. The intrusion was bounded between two major fracture zones that gave rise to an elongated body, which acted as a conduit for later magma heaves. The first magma pulses, forming the chilled margin of the intrusion, show chemical affinities to a micropyroxenite described from the Bushveld complex. The Lower Harzburgite and Chromitiferous Harzburgite Units, judged from the abundance of xenoliths, originated by crystal settling from a contaminated basic magma. The Main Harzburgite crystallized from a magma of constant, probably also basic, composition, which flowed through the conduit after formation of the lower three lithological units. At a late stage of emplacement, after replenishment in the conduit came to a standstill, closed system conditions developed in the upper part of the complex, resulting in a magma fractionation trend of increasing incompatible elements contents towards the top of the intrusion.The mineralization in the lower three rock units and at the base was most probably caused by a segregating sulphide liquid forced to precipitate by the oxidative degassing of dolomite. Sulphur isotope ratios indicate various degrees of contamination of the magma by the enveloping sedimentary rocks, which provided the necessary amounts of S to reach S saturation.  相似文献   

7.
The lengths and widths have been measured for 69 component bodies of composite plutons along the Cobequid Shear Zone. Plutons on major fault strands, those with mylonite zones >0.1 km wide, exhibit evidence of multiple intrusion of magma batches. Small plutons along short faults in stepover zones appear related to rapid emplacement of magma in bodies 1.5–4 km long by 0.1–2 km wide. Such small plutons show low enrichment in incompatible elements in older component bodies, but increasing amounts in younger bodies as a result of progressive magma expulsion from crystal mush during crystallization and shear-enhanced compaction in fault zones. Wider plutons generally occur along longer fault strands accommodating more strain and penetrating deeper into the crust and show enrichment in incompatible elements. The width of the mylonitic fault zone is about 15% of the width of these plutons. The length-to-width ratio of component bodies and composite plutons varies between 2 and 11. The best-fit line describing these data has a slope of 1.056, which implies scaling behavior between plutonism and tectonic processes. Scalar properties of plutonic bodies are similar to those of faults, but scalar relationships observed in component bodies do not apply to composite plutons.  相似文献   

8.
A 525-m-long drill core (DDH-221) through the Partridge Riverintrusion has been divided into four zones on the basis of changesin mineral abundances, compositions and grain size. The igneousrocks in the core consist of cumulate gabbro, troctolite andolivine gabbronorite, in which the original cumulate frameworkof plagioclase and olivine contained varying amounts of trappedintercumulus (pore) liquid. The compositions of the unzoned olivine (Fo31–71) havebeen modified by reaction with Fe-rich in situ intercumulusliquid, but the plagioclase cores (An59–73) have not.The compositions of postcumulus Ca-rich pyroxene, restrictedto En36–44, and the more variable Ca-poor pyroxene (En45–74),follow a downward Fe-enrichment trend similar to the Fe-enrichmentin the olivine. The cumulus olivine expected to be in equilibriumwith plausible parental magmas to these rocks was not preservedin the drill core, nor is the chilled margin to the intrusionsufficiently primitive to account for all the olivine. Revisedmass balance estimates of the primary magmatic compositionsof olivine are Fo67–85. The new limiting value for theprimary olivine is similar to the Fo83–85 olivine expectedto crystallize from the chilled margin to the nearby PigeonPoint olivine diabase sill under equilibrium conditions. Thechanges in the mineral compositions in core DDH-221 do not adequatelydescribe the behavior of parental melts on an equilibrium coolingpath, implying that the cumulus plagioclase and olivine crystallizedelsewhere, and were mixed with varying amounts of intercumulusliquid before introduction to the present crustal site of thePartridge River intrusion. Rock density increases with depth from 2?76 to 3?21, with amean of 2?98 g/cm3. Estimated trapped liquid densities rangefrom 2?56 to 2?92 g/cm3 at high temperatures. This is interpretedto mean that the intercumulus liquid could not have been expelledupward by compaction of the cumulate pile. The dense intercumulusliquid increased downward in abundance to form a series of rocksthat range continuously from variously packed framework cumulatesto chilled non-cumulate rocks in the basal zone. In situ crystallizationis concluded to be the dominant mode of solidification of thePartridge River intrusion, in which infiltration metasomatismis precluded by the high liquid density.  相似文献   

9.
The Prospect intrusion is a dish-shaped alkaline diabase-picritemass 315–400 ft thick intruded into shale at a depth ofabout 600 ft. Picrite, containing more than 25 per cent olivine,occupies the lower half of the intrusion. In the upper half,alkaline diabase, averaging less than 5 per cent olivine, isconcentrated under structural highs of the contact, and alkalineolivine diabase, containing 10 to 25 per cent olivine, is concentratedunder structural lows. These rocks are separated from the shaleby a fine-grained chilled margin. Vertical sections through the picrite zone show a regular antipatheticvariation of modal olivine and plagioclase with a zone of maximumolivine concentration near the bottom; bulk rock compositionsshow an antipathetic relation between MgO plus total iron andall other constituents. Modal and bulk composition variationsare more erratic in the upper half of the intrusion, but analcite,alkali feldspar, and opaque minerals reach maximum concentrationsin this part of the intrusion. The pyroxene content remainsnearly constant in the major rock types. Trends of olivine andplagioclase composition and grain size vary regularly with heightin the intrusion and cross boundaries between major rock typeswithout deflexion. Olivine becomes progressively more fayaliticfrom the base of the picrite zone to the upper chilled margin,but the plagioclase curve has a trend toward more calcic compositionsin the picrite zone. Mean sizes of plagioclase, pyroxene, andolivine increase upwards between the chilled margins. The lower chilled margin is slightly less mafic than the bulkcomposition of the intrusion and may represent a pre-emplacementdifferentiate, but the major part of the differentiation occurredduring emplacement at the present site. Grain size and otherdata indicate that crystallization took place more rapidly fromthe base than from the top of the intrusion, and a variety ofinternal structures indicate that crystallization and differentiationtook place as the magma was intruded over a considerable periodof time. As consolidation of the intrusion proceeded, the liquid becameenriched in all constituents except magnesium and ferrous ironuntil consolidation of alkaline diabase began (when about 70per cent of the whole intrusion had solidified); at that stagethe proportion of calcium, titanium, and ferric iron in theliquid was reduced and the proportion of silica, alumina, andalkalis increased. Processes of differentiation that contributed most to the originof the main rock types are: diffusion, independently of crystallization,of volatiles, alkalis, and possibly calcium into the structurallyhigh parts of the intrusion; gravity accumulation of olivinethat crystallized a short distance above the main front of consolidationas it moved upwards from the base of the intrusion; and upwarddiffusion of salic constituents and downward diffusion of maficones over concentration gradients produced by crystallization. Removal of volatiles from the lower part of the intrusion beforecrystallization reduced the oxidation ratio in the liquid andresulted in a low proportion of ferric iron minerals; crystallizationof abundant olivine (average composition about Fo70), however,prevented enrichment of the liquid in iron. Addition of volatilesto the upper part of the intrusion retarded crystallizationand raised the oxidation ratio to a level at which a relativelyhigh proportion of ferric iron minerals crystallized. Subordinate processes that contributed to the formation of themain rock types as well as to less abundant ones include gravityaccumulation of heavy minerals that were dispersed in the magmaat the time of emplacement, filter pressing caused by localbuttressing around irregularities of the contact, crystal sortingby viscous flow, and gas transfer. Pegmatitic differentiates are ascribed to a complex diffusionprocess along pressure and concentration gradients caused byshear on laminar flow planes. Syenite may have originated byreplacement of pegmatite, but aplites occupy true dilationaistructures and apparently represent liquid remaining after crystallizationof the adjacent rock.  相似文献   

10.
Trace elements were analysed in rocks and minerals from three sections across the Merensky Reef in the Rustenburg Platinum Mine in the Bushveld Complex of South Africa. Whole rocks and separated minerals were analysed by inductively coupled plasma-mass-spectrometer (ICP-MS) and in situ analyses were carried out by ion microprobe and by laser-source ICP-MS. Merensky Reef pyroxenites contain extremely high concentrations of a wide range of trace elements. These include elements incompatible with normal silicate minerals as well as siderophile and chalcophile elements. For major elements and compatible trace elements, the measured concentrations in cumulus phases and the bulk rock compositions are similar. For highly incompatible elements, however, concentrations in bulk rocks are far higher than those measured in the cumulus phases. In situ analyses of plagioclase have far lower concentrations of Th, Zr and rare earth elements than ICP-MS analyses of bulk separates of plagioclase, a difference that is attributed to the presence of trace-element-rich accessory phases in the bulk mineral separates. We used these data to calculate the trace-element composition of the magmas parental to the Merensky Unit and adjacent norites. We argue that there is no reason to assume that the amount of trapped liquid in the Merensky orthopyroxenite was far greater than in the norites and we found that the pyroxenite formed from a liquid with higher concentrations of incompatible trace elements than the liquid that formed the norites. We propose that the Bushveld Complex was fed by magma from a deeper magma chamber that had been progressively assimilating its crustal wall rocks. The magma that gave rise to the Merensky Unit was the more contaminated and unusually rich in incompatible trace elements, and when it entered the main Bushveld chamber it precipitated the unusual phases that characterize the Merensky Reef. The hybrid magma segregated sulphides or platinum-group-element-rich phases during the course of the contamination in the lower chamber. These phases accumulated following irruption into the main Bushveld chamber to form the Merensky ore deposits.  相似文献   

11.
Copper–nickel sulfide mineralization in the Partridge River Intrusion of the 1.1 Ga Duluth Complex is restricted primarily to a 100 m thick zone near the base of the intrusion, which is heterogeneous at meter scales in terms of both sulfide contents and rock types, which include dunite, melatroctolite, troctolite, leucotroctolite, gabbro, olivine gabbro, gabbronorite, and rare norite. Olivine-rich troctolites and melatroctolites appear to have required mineral accumulation on a substrate, whereas augite troctolite and gabbros are thought to have formed via in situ crystallization of magmas ranging in composition from high-Al olivine tholeiite to high-Ti tholeiite. δ18O values of orthopyroxene-poor rocks in the Partridge River Intrusion range from 5.2 to 6.7‰. δ18O values of 6.7‰ are consistent with less than 20% contamination by high-18O metasedimentary country rock, either via devolatilization or local partial melting. Rocks with greater than ∼15% orthopyroxene, gabbronorites, and norites, are characterized by δ18O values in excess of 6.9‰, and required the assimilation of larger amounts of siliceous country rocks. Sulfur isotopic values in leucotroctolitic rocks that contain less than ∼400 ppm S and that overlie the basal zone range between −1.5 and 2‰, values that are consistent with those of mantle-derived sulfur. In contrast, δ34S values in the basal zone range from −1.4 to 10.5‰, where the 34S-enriched samples require an input of sulfur from metasedimentary country rocks. δ34S values of the rocks in the basal zone correlate with variations in olivine Fo content but not with S abundance. The wide range in δ34S values of rocks in the basal zone strongly suggests that magmas interacted with layers in the sedimentary country rocks that were themselves characterized by variable sulfide contents and δ34S values. The S isotopic data suggest that the heterogeneity observed in the basal zone results from the emplacement of relatively thin sheets of compositionally distinct magma. All rock types present in the basal zone can be produced as a result of variable degrees of fractionation of a parental high-Al olivine tholeiite, followed by varying degrees of contamination of derivative liquids by country rocks. The S-contamination process was essential for the development of Cu–Ni mineralization, and was restricted to the earliest stages in the development of the Duluth Complex at a time when volatile species such as S and H2O, and low-T partial melts of country rocks, were available to magmas. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

12.
Anorthositic rocks compose 35–40% of the Middle Proterozoic(Keweenawan; 1?1 Ga) Duluth Complex—a large, compositemafic body in northeastern Minnesota that was intruded beneatha comagmatic volcanic edifice during the formation of the Midcontinentrift system. Anorthositic rocks, of which six general lithologictypes occur in one area of the complex, are common in an earlyseries of intrusions. They are characterized on a local scale(meters to kilometers) by nonstratiform distribution of rocktypes, variably oriented plagioclase lamination, and compositeintrusive relationships. Variably zoned, subhedral plagioclaseof nearly constant average An (60) makes up 82–98% ofthe anorthositic rocks. Other phases include granular to poikiliticolivine (Fo66–38), poikilitic clinopyrox-ene (En'73–37),subpoikilitic Fe-Ti oxides, and various late-stage and secondaryminerals. Whole-rock compositions of anorthositic rocks are modelled bymass balance to consist of three components: cumulus plagioclase(70–95 wt.%), minor cumulus olivine (0–5%), anda gabbroic postcumulus assemblage (5–27%) representinga trapped liquid. The postcumulus assemblage has textural andcompositional characteristics which are consistent with crystallizationfrom basaltic magma ranging from moderately evolved olivinetholeiite to highly evolved tholeiite (mg=60–25). Sympatheticvariations of mg in plagioclase and in mafic minerals suggestthat cumulus plagioclase, though constant in An, was in approximateequilibrium with the variety of basaltic magma compositionswhich produced the postcumulus assemblages. Standard models of mafic cumulate formation by fractional crystallizationof basaltic magmas in Duluth Complex chambers, although ableto explain the petrogenesis of younger stratiform troctoliticto gabbroic intrusions, are inadequate to account for the field,petrographic, and geochemical characteristics of the anorthositicrocks. Rather, we suggest an origin by multiple intrusions ofplagioclase crystal mushes—basaltic magmas charged withas much as 60% intratelluric plagioclase. The high concentrationsof cumulus plagioclase (70–95%) estimated to compose theanorthositic rocks may reflect expulsion of some of the transportingmagma during emplacement or early postcumulus crystallizationof only plagioclase from evolved hyperfeldspathic magma. Althoughthe evolved compositions of anorthositic rocks require significantfractionation of mafic minerals, geophysical evidence indicatesthat ultramafic rocks are, as exposure implies, rare in theDuluth Complex and implies that plagioclase crystal mushes werederived from deeper staging chambers. This is consistent withinterpretations of olivine habit and plagioclase zoning. Moreover,plagioclase could have been segregated from coprecipitatingmafic phases in such lower crustal chambers because of the buoyancyof plagioclase in basaltic magmas at high pressure. The geochemicaleffects of plagioclase suspension in basaltic magmas are consistentwith observed compositions of cumulus plagioclase in the anorthositicrocks and with the geochemical characteristics of many comagmaticbasalts. The petrogenesis of the anorthositic rocks and theoverall evolution of Keweenawan magmas can be related to thedynamics of intracontinental rift formation.  相似文献   

13.
The Tigalak intrusion is a dominantly dioritic layered body, about 80 km2 in area, which ranges in composition from norite to granodiorite. Local areas of the layered rocks display upward fractionation from norite to ferrodiorite. Periodic reversals of mineral composition trends record the emplacement of less fractionated dioritic magma. Heterogeneous mixtures of dioritic and granodioritic rocks occur widely in mappable lenses and layers that alternate up section and along the strike with more uniformly layered rocks. In these mixtures, chilled dioritic pillows occur abundantly in a hybrid cumulate matrix of granodiorite to diorite composition. Cross-cutting granodioritic dikes grade upward into stratigraphically-bound lensoid masses of the hybrid cumulates. It appears that the hybrid rocks formed as a result of the emplacement of the granodioritic magma through lower cumulates into the dioritic magma chamber and that the dioritic pillows represent chilled bodies of Ferich dioritic magma that commingled with cooler granodioritic magma and settled to the floor of the Tigalak magma chamber. The restricted distribution of these mixtures of hybrid cumulates and chilled pillows indicates that mixing between granodioritic and dioritic liquids was limited in time and lateral extent. Periodic injections of granodioritic liquids may have collected as a separate layer below the roof of the magma chamber and above dioritic magma.  相似文献   

14.
Rocks in the outer selvage of the Skaergaard intrusion havea range of textures and compositions, and among these are materialsrepresenting quenched Skaergaard magma. Pristine chilled marginalgabbro (CMG), however, is not ubiquitous at the intrusive contact,because many of the "contact" rocks have been hydrothermallyor metasomatically altered, contaminated with gneiss or olivinexenocrysts, while others contain accumulated minerals. Materialrepresenting quenched magma appears to be restricted to contactrocks that are texturally and mineralogically similar to diabase,and free of accumulated minerals. Where it exists, the CMG isfound within one to three meters of the exposed intrusive contactexcept at the roof of the intrusion where its thickness is greater.CMG was distinguished from the diverse group of contact rocksby petrographic and geochemical screening of over 80 specimens.Samples of CMG from the eastern and western margins and fromthe roof of the intrusion have relatively uniform compositionsimilar to that of ferrobasalt, and are noticeably richer iniron (mg-number=0?51-0?54), TiO2 K2O, and P2O5 than other unmodifiedcontact rocks. CMG's also have trace element compositions distinctfrom most other rocks in the outer Marginal Border Series (MBS).They have incompatible element contents up to 3–6 timesgreater than in LZa-type cumulates, negligible Eu anomalies,and Ni and Cr contents and Ni/Cr ratios that are among the lowestof rocks in the outer MBS. The results of melting experiments corroborate selection ofthis material as CMG. The composition of glasses obtained frompartial melting experiments of LZa-type cumulates are essentiallyidentical to those of the CMG. The 1-atm. liquidus phase relationsfor one of the CMG samples (KT-39) is largely consistent withthe sequence and composition of cumulus minerals observed withdistance inward through the MBS and upward through the LayeredSeries. Solidification of magma at the outer margin of the intrusionis interpreted to have involved locally efficient quench crystallizationfollowed by initial primocryst growth in an undercooled transitionzone a short distance inward that finally extended into regionsof near equilibrium crystallization. The similarity in composition between samples of chilled marginalgabbro from the exposed roof and sides of the intrusion, andthose of reconstituted trapped liquid from early cumulates inthe outer MBS suggests that a single magma, similar in compositionto ferrobasalt, was parental to the Skaergaard intrusion. Thisinterpretation corroborates geophysical evidence of a significantlysmaller mass for the intrusion than that estimated by Wager,and provides a basis for revision of models of its chemicalevolution. Samples chosen by Wager as chilled marginal gabbrobelong spatially, texturally, and compositionally to the groupof LZa-type cumulates in the MBS, and should no longer be regardedas chilled marginal gabbro.  相似文献   

15.
长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因   总被引:1,自引:0,他引:1  
庐枞火山岩盆地南侧的钾质侵入岩带由正长岩-石英正长岩-正长花岗岩组成,以石英正长岩为主。它们的形成时间介于123"130 Ma之间,峰值约为126 Ma,其中正长岩和石英正长岩的形成时间稍早,而正长花岗岩的形成时间略晚。整个钾质侵入岩带的侵位时间晚于庐枞盆地内的橄榄玄粗质火山作用约4"7 Ma,也是长江中下游地区除最东段的宁镇地区外中生代最晚的岩浆活动产物之一。地球化学上,该钾质侵入岩带以高钾、富碱、富集Rb、Th、U、K等强不相容元素和轻稀土元素、亏损高场强元素Nb、Ta和Ti为特征。它们的母岩浆主要是由富集型上地幔部分熔融形成的,从正长岩经石英正长岩到正长花岗岩的演化主要受矿物的分离结晶作用控制,地壳物质同化所起的影响不大。但与同样来自富集型上地幔部分熔融的庐枞盆地内火山杂岩的母岩浆相比,前者的母岩浆来源深度可能更大些或其中包含了更多来自软流圈地幔的组分。两者的演化路径也完全不同,钾质侵入岩带的母岩浆除经历过高压下的分离结晶作用外,晚期在低压下还经历过长石为主,可能还有黑云母的分离结晶,甚至上地壳物质一定程度的混染作用;而盆地内火山杂岩的母岩浆低压下矿物的分离结晶作用及上地壳物质的混染都不明显。庐枞盆地南缘的富钾侵入岩与盆地内的火山杂岩一样,地球化学上都具有明显的大陆弧的特征,暗示它们的岩浆源区可能形成于俯冲带环境,意味着扬子地块北缘先前(推测为古元古代晚期)曾发生过俯冲作用,上地幔的交代富集可能就与这次的俯冲作用有关。  相似文献   

16.
The magma forming the 20 m thick crinanitic/picrodoleritic Dun Raisburgh sill, part of the Little Minch Sill Complex of NW Scotland, comprised a mafic carrier liquid with a crystal cargo of plagioclase and olivine (1 vol%). The olivine component of the cargo settled on the floor of the intrusion while the more buoyant plagioclase component remained suspended during solidification, resulting in a relatively high plagioclase content in the centre of the sill. The settled olivine grains form a lower fining-upwards sequence overlain by a poorly sorted accumulation formed of grains that grew within the convecting magma. The accumulation of olivine on the sill floor occurred over 5–10 weeks, synchronous with the upwards-propagation of a solidification front comprising a porous (~?70 vol% interstitial liquid) plagioclase-rich crystal mush.  相似文献   

17.
We report the first Nd isotopic data on the cumulate rocks of the Bushveld Complex, South Africa. We analysed 17 whole-rock samples covering 4700 m of stratigraphy through the Lower, Critical and Main Zones of the intrusion at Union Section, north-western Bushveld Complex. The basal ultramafic portions of the complex have markedly higher ɛNd(T) (−5.3 to −6.0) than the gabbronoritic Main Zone (ɛNd(T) −6.4 to −7.9). The rocks of the Upper Critical Zone have intermediate values. These results are in agreement with new Nd isotope data on marginal rocks and sills in the floor of the complex that are generally interpreted as representing chilled parental magmas, and with published Sr isotopic data, all of which show a larger crustal component in the upper part of the intrusion. In contrast, the concentrations of many highly incompatible trace elements are decoupled from the isotopic signatures. The basal portions of the complex have higher ratios of incompatible to compatible trace elements than the upper portions. The variations of isotopic and trace-element compositions are interpreted in terms of a change in the nature of the crustal material that contaminated Bushveld magmas. Those magmas that fed into the lower part of the complex had assimilated a relatively small amount of incompatible trace-element-rich partial melt of upper crust, whereas magmas parental to the upper part of the complex had assimilated a higher proportion of the incompatible trace-element-poor residue of partial melting. Received: 5 October 1999 / Accepted: 7 July 2000  相似文献   

18.
Crater Hill is a small volume alkali olivine basalt volcano in the Auckland volcanic field. Crater Hill consists of a sequence of pyroclastic and effusive eruptive units of which the earliest have low silica, ferromagnesian elements and Mg/Fe ratios, high incompatible elements and are more silica undersaturated while the last material to be erupted has higher silica, ferromagnesian elements and Mg/Fe ratios but relatively low incompatible elements. Through the sequence, Mg-number changes from 59 to 67 and LaN/LuN decreases by a factor of 3. This systematic compositional variation is interpreted to be the result of clinopyroxene ± spinel fractionation at pressures of at least 1.4–1.9 GPa, from a primary magma generated by small-degree partial melting in the garnet peridotite stability field (>2.5 GPa). Fractionation occurred where early crystals grew and accumulated along the conduit walls. The rising magma evolved along a polybaric liquid line of descent until it encountered lithosphere cold enough to chill the dike margin. Above this depth, further cooling resulted only in the growth of suspended phenocrysts in a magma separated from the country rock by a chilled margin. This process is observed in the Auckland volcanic field because the rate of magma production is very small allowing compositional features to be preserved that would be overwhelmed in a larger scale magmatic system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The Graveyard Point intrusion is the only known example of awell-exposed differentiated mafic pluton associated with thelate Miocene–Pleistocene magmatism of the western SnakeRiver Plain (SRP). It is exposed in a 6 km by 4 km area adjacentto the Oregon–Idaho border, and exposures range in thicknessfrom 20 to 160 m. The thicker parts of the intrusion are stronglydifferentiated and contain a 25–60 m thick section ofwell-laminated cumulus-textured gabbros that grade upward intopegmatoidal ferrogabbro. Evolved liquids formed sheets of Fe-richsiliceous granophyre. At least two injections of magma are indicatedby abrupt discontinuities in the rock and mineral compositions,and by the lack of mass balance between the bulk intrusion andits chilled borders. The laminated gabbros are interpreted tohave formed from a tongue of augite and plagioclase crystalsthat were carried in with the second pulse of magma. Followingthe final emplacement of the intrusion, in situ differentiationproceeded through a two-stage process: the ferrogabbros areexplained as interstitial liquids forced out of the crystalmush by compaction, and the siliceous granophyres are interpretedto be residual liquids that migrated out of the partly crystallizedferrogabbros in response to the exsolution of volatiles. Becausethe geochemical trend inferred for the mafic to intermediatecomposition liquids in the Graveyard Point intrusion is similarto the trend for many western Snake River Plain lavas, the plutonmay be a good model for shallow sub-volcanic magma chamberselsewhere in the SRP. However, some western SRP lavas containanomalously high concentrations of P2O5 , which are best explainedby mixing within the active crustal mush column or with partialmelts of previously formed differentiated mafic intrusions. KEY WORDS: Snake River Plain; mafic intrusions; tholeiitic; sill; granophyre  相似文献   

20.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号