首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
We have determined the elastic thicknessTe of the oceanic lithosphere along two volcanic chains of the South Central Pacific: Cook-Austral and Society islands. We used a three-dimensional spatial method to model the lithospheric flexure assuming a continuous elastic plate. The model was constrained by geoid height data from the SEASAT satellite.Along the Cook-Austral chain the elastic thickness increases westward, from 2–4 km at McDonald hot spot to 14 km at Rarotonga. At McDonald seamount, however, the data are better explained by a local compensation model. The observed trend shows an increase ofTe with age of plate at loading time. However, the elastic layer under the Cook-Austral appears systematically thinner by several kilometers than expected for “normal” seafloor, suggesting that substantial thermal thinning has taken place in this region. Considering the apparent thermal age of the plate instead of crustal age improves noticeably the results. Along the Society chainTe varies from 20 km under Tahiti to 13 km under Maupiti which is located 500 km westward. When plotting together the Society and Cook-AustralTe results versus age of load, we notice that within the first five million years after loading,Te decreases significantly while tending rapidly to an equilibrium value. This may be interpreted as the effect of initial stress relaxation which occurs just after loading inside the lower lithosphere and suggests that the presently measured elastic thickness under the very young Tahiti load ( 0.8 Ma) is not yet the equilibrium thickness.  相似文献   

2.
We analysed in detail three earthquakes recorded in a small-aperture accelerometric array in Mexico City, using the correlation of the records as a function of time along the accelerogram and frequency. Ground response is strongly conditioned by the fundamental period of the soft soils at the site of the array (T0). Energy at periods longer than 2T0 is guided by the crustal structure (with a thickness of 45 km). The wave field at periods between T0 and 2T0 also consists of surface waves but guided by the upper 2–3 km of volcanic sediments in central Mexico. For periods smaller than T0, ground motion is uncorrelated among the stations. Our results indicate that seismic response of Mexico City, including its very long duration, results from deeply guided surface waves (between 2 and 45 km depth) interacting with the very local response of the soft surficial clay layer.  相似文献   

3.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

4.
The Laccadive Ridge (L-R), trending roughly parallel to the west coast of India, is an intriguing segment of the northernmost Chagos-Laccadive Ridge (C-L-R) system. Although crustal nature and isostatic response of the southern C-L-R is well known, there are no similar studies on the L-R. In the present study, the isostatic response of the lithosphere beneath the L-R is estimated so as to characterize its crustal nature, total crustal as well as effective elastic plate thickness and mode of compensation. Twelve gravity and bathymetry profiles across the ridge were analyzed using linear transfer function and forward model techniques. The observed admittance function within the diagnostic waveband of 250 < λ > 80 km (0.025 < k > 0.080 km−1) fits well with (i) the Airy model whose average crustal thickness (Tc) and density are 17 ± 2 km and 2.7 × 103 kg m−3, respectively, and (ii) the thin plate flexure model of isostasy with an effective elastic plate thickness (Te) of 2–3 km. The estimated average crustal thickness and density are in good agreement with published seismic refraction results over the ridge. The results of the present study support an Airy model of isostasy for the L-R. The low Te value, in view of other published results in the study area, suggests stretched and loaded continental lithosphere of the L-R during the evolution of the western continental margin of India.  相似文献   

5.
The Sawadani greenstone in the Chichibu Paleozoic System is an ancient submarine volcanic complex consisting of pillow lavas and hyaloclastites. The volcanism is divided into two periods. Alkali basalt was erupted in the first period and two shield-shaped cones were formed. After a period of dormancy the volcanism of the second period took place and a cone was formed by eruptions of lavas ranging in composition from mildly alkaline to tholeiitic basalt. The top of the volcano nearly reached the sea surface and was finally about 3.7 km above the base. A limestone cap and volcanic conglomerate were deposited on the summit. The base rests conformably on upper Carboniferous sandstone and subordinate mudstone derived from a continent or mature island arc. Many feeding channels of lava cut the volcanic body and underlying sedimentary formation. Sedimentation proceeded concurrently on the surrounding sea floor, so that volcanic and sedimentary material is interlayered.The Sawadani greenstone, although it occurs in the high-P/T metamorphic belt, is not believed to be a fragment of oceanic crust (ophiolite complex) formed by oceanic ridge volcanism and later carried into a convergent zone. It is a seamount formed on and within a sedimentary sequence near a continent or island arc. The magma changed from alkaline to tholeittic as the volcano grew.It cannot be assumed that all metavolcanic rocks formed in high-pressure metamorphic terranes are fragments of oceanic crust.  相似文献   

6.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

7.
New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1–13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to < 1.5 km the fragmentation level and the structural depth of the vent, which is thought to be funnel-shaped, flaring shallowly to a surface diameter of 2 km. Overlying the ignimbrite are layers of Plinian dacite fallout, > 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65°E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the stratovolcanoes, characteristically small eruptive volumes ( < 0.1 to 0.4 km3), and the dominance of andesite and low-SiO2 dacite suggest complex crustal reservoirs, not large integrated magma chambers. Linear fractures just outside the 1912 vent strike nearly normal to the volcanic front and may reflect dike transport of magma previously stored beneath Trident 3–5 km away. Caldera collapse at Mount Katmai may have taken place in response to hydraulic transfer of Katmai magma toward Novarupta via reservoir components beneath Trident. The voluminous 1912 eruption (12–15 km3 DRE) was also unusual in producing high-silica rhyolite (6–9 km3 DRE), a composition rare in this arc and on volcanic fronts in general. Isotopic data indicate that rhyolite genesis involved little assimilation of sedimentary rocks, pre-Tertiary plutonic rocks, or hydrothermally altered rocks of any age. Trace-element data suggest nonetheless that the rhyolite contains a nontrivial crustal contribution, most likely partial melts of Late Cenozoic arc-intrusive rocks. Because the three compositions (77%, 66–64.5%, and 61.5–58.5% SiO2) that intermingled in 1912 vented both concurrently and repeatedly (after eruptive pauses hours in duration), the compositional gaps between them must have been intrinsic to the reservoir, not merely effects of withdrawal dynamics.  相似文献   

8.
The gravitational deformation of volcanoes is largely controlled by ductile layers of substrata. Using numerical finite-element modelling we investigate the role of ductile layer thickness and viscosity on such deformation. To characterise the deformation we introduce two dimensionless ratios; Πa (volcano radius/ductile layer thickness) and Πb (viscosity of ductile substratum/failure strength of volcano). We find that the volcanic edifice spreads laterally when underlain by thin ductile layers (Πa>1), while thicker ductile layers lead to inward flexure (Πa<1). The deformation style is related to the switch from predominantly horizontal to vertical flow in the ductile layer with increasing thickness (increasing Πa). Structures produced by lateral spreading include concentric thrust belts around the volcano base and radial normal faulting in the cone itself. In contrast, flexure on thick ductile substrata leads to concentric normal faults around the base and compression in the cone. In addition, we show that lower viscosities in the ductile layer (low Πb) lead to faster rates of movement, and also affect the deformation style. Considering a thin ductile layer, if viscosity is high compared to the failure strength of the volcano (high Πb) then deformation is coupled and spreading is produced. However, if the viscosity is low (low Πb) substratum is effectively decoupled from the volcano and extrudes from underneath it. In this latter case evidence is likely to be found for basement compression, but corresponding spreading features in the volcano will be absent, as the cone is subject to a compressive stress regime similar to that produced by flexure. At volcanoes where basement extrusion is operating, high volcano stresses and outward substratum movement may combine to produce catastrophic sector collapse. An analysis of deformation features at a volcano can provide information about the type of basement below it, a useful tool for remote sensing and planetary geology. Also, knowledge of substratum geology can be used to predict styles of deformation operating at volcanoes, where features have not yet become well developed, or are obscured.  相似文献   

9.
In a general lithospheric model of a simple divergent ocean and continental margin that satisfies the constraints of isostasy and gravity anomalies, the free-air gravity anomaly at the margin is modelled by an oceanic crust that thickens exponentially toward the margin from its common value of 6.4 km about 600 km from the margin to 17.7 km at the margin; this postulated thickening is supported empirically by seismic refraction measurements made near continental margins. The thickness of the oceanic crust matches that of the continental lithosphere at breakup, as observed today in Afar and East Africa, and is interpreted as the initial oceanic surface layer chilled against the continental lithosphere. With continued plate accretion, the chilled oceanic crust thins exponentially to a steadystate thickness, which is achieved about 40 m.y. after breakup. These findings contrast with the generally held view that the oceanic crust has a uniform thickness.During the first 40 m.y. of spreading, the thicker oceanic crust, of density 2.86 g/cm3, displaces the denser (3.32 g/cm3) subjacent material; by isostasy, the spreading ridge and the rest of the seafloor thus stand higher in younger( <40m.y.) oceans than they do in older(>40m.y.) oceans. This is postulated to be the cause of the empirical relationship between the crestal depth of spreading ridges and the age (or half-width) of ocean basins.  相似文献   

10.
洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率 90mm·a-1)、慢速(全扩张速率20~50mm·a-1)和超慢速(全扩张速率20mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4km、7.2km和5.3km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1km、4.6~8.7km和4.2~10.2km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(10Ma)的洋壳比洋中脊(10Ma)的洋壳厚~0.3km,表明洋壳厚度与洋壳年龄有一定的正相关性.  相似文献   

11.
Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.  相似文献   

12.
We used a wavelet formulation of the classical spectral isostatic analysis to invert satellite-derived gravity and topography/bathymetry for elastic thickness (Te) over South America and its surrounding plates. To provide a homogeneous representation of the gravity field for this vast region, we corrected free-air anomalies derived from a combination of terrestrial/marine gravity data with data from the GRACE and CHAMP satellite missions (model EIGEN-CG03C) by a simple Bouguer slab using a smoothed representation of surface relief (wavelengths > 125 km). The resulting Bouguer anomaly compares well with terrestrial data acquired in the Central Andes and allows Te to be confidently estimated for values greater than 10 km. The Te map resolves regional-scale features that are well-correlated with known surface structures and shows maximum values of 100 ± 15 km over the Archean–Neoproterozoic core of the continent, decreasing to less than 30 km around continental margins. Several regions of the oceanic plates and continental margins have an elastic thickness less than 10 km. We performed a quantitative analysis by comparing the elastic thickness with the thermal structure predicted from the age of oceanic crust and igneous–metamorphic rocks. This demonstrates that oceanic plates have been weakened by thermal interaction with hotspots and locally by fracturing and hydration near the trench. We observe that only the nucleus of the continent has resisted the thermomechanical weakening induced by the rifting of Africa and South America along the passive margin and the Andean orogeny along the active margin. This latter region shows along-strike variations in Te that correlate with the geotectonic segmentation of the margin and with the pattern of crustal seismicity. Our results reveal that the rigidity structure follows the segmentation of the seismogenic zone along the subduction fault, suggesting a causal relationship that should be investigated in order to improve the understanding and predictability of great earthquakes and tsunamis.  相似文献   

13.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

14.
If plate thickness depends on crustal age, the region of extensive partial melting below the spreading axis will be wider around fast-spreading ridges. The melt region creates a subaxial conduit channeling partial melts away from ridge-centered hot spots. The channel is here modeled by an elliptical pipe of semiminor (vertical) axis 2 × 106 cm (20 km) and semimajor (horizontal) axis KS, where S is spreading half-rate (cgs) and K is a constant of magnitude 1014 to 1015 seconds. This simple analytical model is used to explain the observation that maximum hot spot elevations on the Mid-Oceanic Ridge fall dramatically with increasing spreading rate (there are no Icelands or Afars on the East Pacific Rise!). A hot spot under a fast-spreading ridge has a broad pipe in which to discharge its partial melts; hence, only a slight topographic gradient and a low elevation is needed to discharge the mass flux rising out of the deeper mantle at the hot spot center. A second factor is that partial melts are “used up” faster in the accretion process on fast-spreading ridges. In the simple analytical model, both factors operating together explain the rapid fall of hot spot heights with increasing spreading half-rate. This result indirectly helps confirm the idea of horizontal pipe flow below the Mid-Oceanic Ridge.A theoretical topographic profile through a hot spot on the Mid-Oceanic Ridge is derived from the assumption that the pressure — i.e., topographic — gradient at a distance x from the hot spot is sufficient to supply all the accreting lithosphere downstream of x, out to xn, the limit of topographic hot spot influence. The predicted profile is quadratic in x and concave upward, and resembles several observed profiles where neighboring hot spots are not so close as to confuse the profiles. Some observed profiles are more nearly linear or even convex upward. This could be explained, for example, by downstream increases in viscosity or decreases in pipe dimensions.A hot spot on a ridge spreading at much less than 1 cm/yr half-rate would produce an enormous elevation of the ridge axis, according to our model, because the pipe would be very narrow. Such a large topographic high would create a large gravity potential which would cause the plates to move apart faster, thereby widening the pipe, and reducing the topographic high. The system of ridges and hot spots may thus be self-regulating with respect to plate speeds; this could explain why spreading half-rates on the Mid-Oceanic Ridge are in many areas as low as 1.0 cm/yr but very rarely as low as 0.5 cm/yr.  相似文献   

15.
This paper presents a probable isostatic model of the East Anatolian Region, which lies in a belt of significant plate movements. Probable locations of the horizontal and vertical discontinuities in the crust structure were determined using the normalized full gradient (NFG) method. For the purpose of explaining the mechanism that supports topography corresponding to the crust thickness in the region, calculations of effective elastic thickness (T e) were carried out initially by utilizing admittance and misfit functions. According to these results, the effective elastic thickness value obtained was less than the crust thickness, even though the isostatic model does not conform with the Airy model. Consequently, it was assumed that there could be problems beneath the crust. Hence, the NFG method was applied on the Bouguer gravity data of the region in order to investigate probable discontinuities in the crust structure. According to the NFG results, vertical structural transitions were observed at a depth ranging between 10 and 30 km, which begin immediately north of the Bitlis Zagros Suture Zone (BZSZ) and continue in a northerly direction. The relationship between the effective elastic thickness (T e; 13 km in average as determined in the last stage), and the seismogenic zone in the region was investigated. If the T e value happens to be less then the crustal thickness, then one can say that there are problems in the crustal structure of the region similar to Eastern Anatolia. Indeed, when NFG results of the study area are examined, numerous vertical and horizontal discontinuities in the crust can be observed. These discontinuities, which correspond to low Bouguer gravity anomalies and shallow focal depth-earthquakes, are probably the source of the factors which rule the tectonic mechanism of the region.  相似文献   

16.
洋中脊及邻区洋盆的洋壳厚度能很好地反映区域岩浆补给特征,对于研究洋中脊内部及周缘岩浆活动和构造演化过程具有很好的指示意义.西北印度洋中脊作为典型的慢速扩张洋中脊,其扩张过程与周缘构造活动具有很强的时空关系.本文利用剩余地幔布格重力异常反演了西北印度洋洋壳厚度,由此分析区域内洋壳厚度分布和岩浆补给特征.研究发现,西北印度洋洋壳平均厚度为7.8 km,受区域构造背景影响厚度变化较大.根据洋壳厚度的统计学分布特征,将区域内洋壳分为三种类型:薄洋壳(小于4.5 km)、正常洋壳(4.5~6.5 km)和厚洋壳(大于6.5 km),根据西北印度洋中脊周缘(~40 Ma内)洋壳厚度变化特征可将洋中脊划分为5段,发现洋中脊洋壳厚度受区域构造活动和地幔温度所控制,其中薄洋壳主要受转换断层影响造成区域洋壳厚度减薄,而厚洋壳主要受地幔温度和地幔柱作用影响,并在S4洋中脊段显示出较强的热点与洋中脊相互作用,同时微陆块的裂解和漂移也可能是导致洋壳厚度差异的原因之一.  相似文献   

17.
Many volcanic rift zones show dikes that are oriented oblique rather than parallel to the morphological ridge axis. We have evidence that gravitational spreading of volcanoes may adjust the orientation of ascending dikes within the crust and segment them into en-echelon arrays. This is exemplified by the Desertas Islands which are the surface expression of a 60 km long submarine ridge in southeastern Madeira Archipelago. The azimuth of the main dike swarm (average = 145°) deviates significantly from that of the morphological ridge (163°) defining an en-echelon type arrangement. We propose that this deviation results from the gravitational stress field of the overlapping volcanic edifices, reinforced by volcano spreading on weak substratum. We tested our thesis experimentally by mounting analogue sand piles onto a sand and viscous PDMS substratum. Gravitational spreading of this setup produced en-echelon fractures that clearly mimic the dike orientations observed, with a deviation of 10°–32° between the model’s ridge axis and that of the main fracture swarm. Using simple numerical models of segmented dike intrusion we found systematic changes of displacement vectors with depth and also with distance to the rift zone resulting in a complex displacement field. We propose that at depth beneath the Desertas Islands, magmas ascended along the ridge to produce the overall present-day morphology. Above the oceanic basement, gravitational stress and volcano spreading adjusted the principal stress axes’ orientations causing counterclockwise dike rotation of up to 40°. This effect limits the possible extent of lateral dike propagation at shallow levels and may have strong control on rift evolution and flank stability. The results highlight the importance of gravitational stress as a major, if not dominant factor in the evolution of volcanic rift zones.Editorial responsibility: M Carroll  相似文献   

18.
The elastic thickness of the lithosphere in the Pacific Ocean   总被引:1,自引:0,他引:1  
In this study, we present determinations of the effective elastic thicknessTe of the oceanic lithosphere along Pacific chains or archipelagoes.Te is determined by computing the deflection of a continuous elastic plate under the load of volcanoes, and constrained by geoid heights provided by SEASAT. In the South Central Pacific, estimates of 14 km for the Marquesas and 6 km or less for the Pitcairn-Mururoa-Gloucester chain are in good agreement with a previous work in this region (Cook-Austral and Society chains). Around the Line Islands chain, SEASAT data reveal that the bathymetry is poorly known, preventing fine analysis. Meanwhile,Te looks globally very low ( 6 km), except for three volcanoes but these results may be unreliable. The Easter chain features lowTe values ( 6 km), with no noticeable variation along the chain. Higher values are found for a Samoan island, Manuae (24 km), and along the Hawaiian-Emperor seamounts chain (from 32 km at the eastern end of the chain to 21.5 km for the Hawaiian volcanoes, and from 25.5 to 15 km for the Emperor seamounts). The large number ofTe estimates obtained in this study points out a noticeable difference between North and South Pacific results. Those from the North Pacific agree with the general trend (increase with the square root of age plate at loading time), while those from the South Central Pacific are much lower, according to their plate age. These lowTe results from the South Pacific are only partly explained by taking account of thermal perturbations using the rejuvenation model. Therefore, these results then point out a regional difference in oceanic lithosphere.  相似文献   

19.
Using bathymetry and altimetric gravity anomalies, a 1° 9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.  相似文献   

20.
The results of seismic deep reflection,high resolution refraction and shallow artificial seismic exploration indicate that the fault on the northern bank of the Weihe river is composed of two faults,one is the Yaodian-Zhangjiawan fault and the other is the Chuanzhang-Zuitou fault.The 22 km long Yaodian-Zhangjiawan fault of EW-striking starts from Chenjiagou via Yaodian town,Qianpai village,Bili village,Wujia town and Zhangjiawan to Jiajiatan.The 15 km long Chuanzhang-Zuitou fault striking near EW starts from Chuanzhang via Mabei to Zuitou.The Weihe fault offset the basement and upper crust,the reflecting layers of TQ,TN,TE and Tg are ruptured at depth of about 15 km.In the deep part,the Weihe fault and the secondary fault form a Y-shaped structure or a synthetic low angle intersection.The Weihe fault is a listric normal fault.The fault has obvious structural characteristics of a reversed-drag normal fault and a normal drag normal fault with the depth of 1 000 m,and also has the characteris-tics of syngenetic sediment.The Weihe fault is one of the faults which control the basin sediment,and it is the boundary fault of Xi’an depression and Xianyang salient.The depth of the fault decreases from the west to east gradually,the deep part intersects with the Lintong-Chang’an fault at the intersection part of Weihe River,Jinghe River and Bahe River and the shallow part connects with the Weinan-Jingyang fault.The seismic exploration re-sults indicate that no fault exists on southern bank of the Weihe River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号