首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze decadal climate variability in the Mediterranean region using observational datasets over the period 1850–2009 and a regional climate model simulation for the period 1960–2000, focusing in particular on the winter (DJF) and summer (JJA) seasons. Our results show that decadal variability associated with the winter and summer manifestations of the North Atlantic Oscillation (NAO and SNAO respectively) and the Atlantic Multidecadal Oscillation (AMO) significantly contribute to decadal climate anomalies over the Mediterranean region during these seasons. Over 30% of decadal variance in DJF and JJA precipitation in parts of the Mediterranean region can be explained by NAO and SNAO variability respectively. During JJA, the AMO explains over 30% of regional surface air temperature anomalies and Mediterranean Sea surface temperature anomalies, with significant influence also in the transition seasons. In DJF, only Mediterranean SST still significantly correlates with the AMO while regional surface air temperature does not. Also, there is no significant NAO influence on decadal Mediterranean surface air temperature anomalies during this season. A simulation with the PROTHEUS regional ocean–atmosphere coupled model is utilized to investigate processes determining regional decadal changes during the 1960–2000 period, specifically the wetter and cooler 1971–1985 conditions versus the drier and warmer 1986–2000 conditions. The simulation successfully captures the essence of observed decadal changes. Model set-up suggests that AMO variability is transmitted to the Mediterranean/European region and the Mediterranean Sea via atmospheric processes. Regional feedbacks involving cloud cover and soil moisture changes also appear to contribute to observed changes. If confirmed, the linkage between Mediterranean temperatures and the AMO may imply a certain degree of regional decadal climate predictability. The AMO and other decadal influences outlined here should be considered along with those from long-term increases in greenhouse gas forcings when making regional climate out-looks for the Mediterranean 10–20?years out.  相似文献   

2.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

3.
This paper presents a review of the time period A.D. 1400-1980 based on Greenland ice cores from the central west Greenland averaged record, and from winter and summer seasonal isotopic records from the Greenland Ice Sheet Project 2 (GISP2). This time period includes the so-called "Little Ice Age". The concept of the "Little Ice Age" has evolved from the idea of a simple, centuries-long period of lower temperatures to a more complex view of temporal and spatial climatic variability. In the central Greenland ice core isotopic signals, the fifteenth and early sixteenth centuries show multi-decadal excursions above and below the mean reference. The sixteenth and mid-eighteenth to mid-nineteenth centuries are notable for decade-to-decade swings (high-low) in the isotopic signal, while multi-decadal low excursions dominate the seventeenth century. The "subdued" nature of the "Little Ice Age" isotopic signal in central Greenland is probably influenced by the North Atlantic Oscillation (NAO), which presents opposing temperature excursions between west Greenland and northern Europe. Changes in the prevailing atmospheric circulation (Iceland Low) can explain some of the spatial and temporal variability between the central Greenland isotopic records and Iceland temperature.  相似文献   

4.
The Greenland coastal temperatures have followed the early 20th century global warming trend. Since 1940, however, the Greenland coastal stations data have undergone predominantly a cooling trend. At the summit of the Greenland ice sheet the summer average temperature has decreased at the rate of 2.2 °C per decade since the beginning of the measurements in 1987. This suggests that the Greenland ice sheet and coastal regions are not following the current global warming trend. A considerable and rapid warming over all of coastal Greenland occurred in the 1920s when the average annual surface air temperature rose between 2 and 4 °C in less than ten years (at some stations the increase in winter temperature was as high as 6 °C). This rapid warming, at a time when the change in anthropogenic production of greenhouse gases was well below the current level, suggests a high natural variability in the regional climate. High anticorrelations (r = ?0.84 to?0.93) between the NAO (North Atlantic Oscillation) index and Greenland temperature time series suggest a physical connection between these processes. Therefore, the future changes in the NAO and Northern Annular Mode may be of critical consequence to the future temperature forcing of the Greenland ice sheet melt rates.  相似文献   

5.
[Translated by the editorial staff] Simulating the precipitation regime of Northern Africa is challenging for regional climate models, particularly because of the strong spatial and temporal variability of rain events in the region. In this study we evaluate simulations conducted with two recent versions of regional climate models (RCM) developed in Canada: the CRCM5 and CanRCM4. Both are also used in the COordinated Regional Climate Downscaling EXperiment (CORDEX)-Africa. The assessment is based on the occurrence, duration, and intensity indices of daily precipitation in Maghreb during the fall and spring seasons from 1998 to 2008. We also examine the links between the North-Atlantic Oscillation (NAO) index, weather systems, and the precipitation regime over the region. During the rainy season (September to February), the CRCM5 reproduces the frequency and intensity of extreme precipitation adequately, as well as the occurrence of days with rain, while the CanRCM4 underestimates precipitation extremes. The study of links between weather systems and the precipitation regime shows that, along the Atlantic coast, precipitation (occurrence, intensity, and wet sequences) increases significantly with storm frequency in the fall. In winter, these links grow stronger going east, from the Atlantic coast to the Mediterranean coast. The negative phases of the NAO index are statistically associated with the increase in rain intensity, extremes, and accumulation along the Atlantic coast in the fall. However, the link weakens in winter over these regions and strengthens along the Mediterranean coast as the precipitation frequency rises during negative phases of the NAO. Both RCMs generally reproduce the links between the NAO and the precipitation regime well, regardless of location.  相似文献   

6.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

7.
Zonal circulation indices with monthly and seasonal resolutions are calculated based on gridded monthly mean sea-level pressure (SLP) reconstructed back to 1780 by Jones et al. (1999): an overall zonal index for the whole European area between 30°W and 40°E, a normalized index for the North Atlantic Oscillation (NAO), and a similar index for Central Europe. For most of the early time up to the mid-nineteenth century we get preferred negative anomalies in the NAO index for winter and preferred positive ones for summer. The turning points in cumulative anomalies - during the 1850s for winter and during the 1870s for summer - indicate a transition period in circulation modes from the "Little Ice Age" to the recent climate in Europe. Running correlations (time windows of 21 years with time steps of one year) between zonal indices and regional temperature time series from Central England, Stockholm and two Central European regions are all indicating major instationarities in these relationships with a particular decline in winter correlations around the turn from the nineteenth to the twentieth centuries. Aspects of different circulation patterns linked with these variabilities are discussed.  相似文献   

8.
A sign-variable structure of sea surface temperature (SST) anomalies in the high, subtropical, and tropical latitudes of the North Atlantic under the North Atlantic Oscillation index (NAO) values NAO ≥ 1 and NAO ≤ ?1 is considered. A difference in cyclonic activity in winter under extreme values of the NAO is noted. The relation between the NAO anomalies in the areas with maximum cyclonic activity in the North Atlantic and some hydrometeorological quantities in the Crimea is analyzed. Preliminary estimates of the occurrence of a quasi-twenty-year cycle in the variability of processes determined by extreme values of the NAO are presented.  相似文献   

9.
This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation(NAO) during the period 1950–2012. Results show that, for positive NAO(NAO+) events, the instantaneous blocking(IB) frequency exhibits an enhancement along the southwest–northeast(SW–NE) direction from the eastern Atlantic to northeastern Europe(SW–NE pattern, hereafter), which is particularly evident during the NAO+decaying stage. By contrast, for negative NAO(NAO-)events, the IB frequency exhibits a spatially asymmetric southeast–northwest(SE–NW) distribution from central Europe to the North Atlantic and Greenland(SE–NW pattern, hereafter). Moreover, for NAO-(NAO+) events, the most marked decrease(increase) in the surface air temperature(SAT) in winter over northern Europe is in the decaying stage. For NAO+events, the dominant positive temperature and precipitation anomalies exhibit the SW–NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO-events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW–NE direction. In addition, the downward infrared radiation controlled by the NAO's circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO's phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.  相似文献   

10.
春季格陵兰海冰变化及与北大西洋涛动和北极涛动的联系   总被引:1,自引:0,他引:1  
采用长序列(1903—1994年)GISST海冰面积和海表温度(SST)资料、NCEP/NCAR再分析资料等,分析了春季格陵兰海冰面积年代际变化特征及其同北大西洋海气变化的关系。结果表明:春季格陵兰海冰面积变化的主要特征可由海冰变化的EOF第一主分量表示。春季海冰变化与前冬NAO/AO以及冬春1—4月份北大西洋墨西哥湾流区SST具有明显的反相变化趋势,且均具有准60a的周期变化特征。海洋向大气的热量输送(感热、潜热)受到海冰变化的显著影响(冰多输送少)。海冰作为大气的冷源,也明显影响地表净辐射的变化。进而,春季海冰变化可影响后期的大气环流变化:海冰面积偏大(偏小),冰岛低压和阿留申低压偏弱(偏强),夏季北非和亚洲大陆的SLP明显偏低(偏高),两大陆夏季热低压加强(减弱)。  相似文献   

11.
The relationship between the variability of the surface elevation of the Greenland Ice Sheet (GIS) in winter and sea level pressure is identified through analysis of data from satellite-borne radar altimeters, together with meteorological data fields during 1993-2005. We found that both the North Pacific Oscillation (NPO) and the North Atlantic Oscillation (NAO), the two major teleconnection patterns of the atmospheric surface pressure fields in the Northern Hemisphere, significantly influence the GIS winter elevation change. Further, it is suggested that the NPO may affect the GIS accumulation by influencing the NAO, particularly by changing the intensity and location of the Icelandic Low.  相似文献   

12.
The spatial and temporal pattern of the link between the winter precipitation variability and variations in the North Atlantic sea surface temperature, the Arctic sea ice concentration, and 500 hPa geopotential height in the Northern Hemisphere is analyzed for the period of 1952-2012. The analysis reveals two principal modes of covariability in the analyzed characteristics. The first mode which explains the most part of covariability, is related to the impact of the North Atlantic Oscillation. The second mode indicates the significant contribution of the Atlantic Multidecadal Oscillation associated with winter precipitation anomalies of the same sign in Europe with the maxima on the East European Plain and in the Balkan region during the positive phase of AMO.  相似文献   

13.
北极海冰变化的时间和空间型   总被引:14,自引:0,他引:14  
汪代维  杨修群 《气象学报》2002,60(2):129-138
利用 4 4a(195 1~ 1994年 )北极海冰密度逐月资料 ,分析提出了一种与北极冰自然季节变化相吻合的分季法 ,并根据这种分季法 ,使用EOF分解 ,揭示了北极各季海冰面积异常的特征空间型及其对应的时间变化尺度。结果表明 :(1)北极冰面积异常变化的关键区 ,冬季 (2~ 4月 )主要位于北大西洋一侧的格陵兰海、巴伦支海和戴维斯海峡以及北太平洋一侧的鄂霍次克海和白令海 ,夏季 (8~ 10月 )则主要限于从喀拉海、东西伯利亚海、楚科奇海到波佛特海的纬向带状区域内 ,格陵兰海和巴伦支海是北极海冰面积异常变化的最重要区域 ;(2 )春 (5~ 7月 )、秋 (11月~次年 1月 )季各主要海区海冰面积异常基本呈同相变化 ,夏季东西伯利亚海、楚科奇海、波佛特海一带海冰面积异常和喀拉海呈反相变化 ,而冬季巴伦支海、格陵兰海海冰面积异常和戴维斯海峡、拉布拉多海、白令海、鄂霍次克海的海冰变化呈反相变化 ;(3)北极冰总面积过去 4 4a来确实经历了一种趋势性的减少 ,并且叠加在这种趋势变化之上的是年代尺度变化 ,其中春季 (5~ 7月 )海冰面积异常变化对年平均北极冰总面积异常变化作出了主要贡献 ;(4)位于北太平洋一侧极冰面积异常型基本具有半年的持续性 ,而位于北大西洋一侧极冰面积异常型具有半年至一年的持续性  相似文献   

14.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

15.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   

16.
The present paper selects the northern winter of December 1995–February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Niña event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased transient eddy activity, which causes an extension of the subtropical jet eastward from the coast of North America.  相似文献   

17.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

18.
冬季北大西洋涛动极端异常变化与东亚冬季风   总被引:70,自引:16,他引:54  
武炳义  黄荣辉 《大气科学》1999,23(6):641-651
依据资料分析发现,冬季北大西洋涛动指数与冬季西伯利亚高压范围呈反向变化关系,冬季北大西洋涛动指数异常偏高(低)时期,30~50oN的亚洲大陆中部气压显著偏低(高),致使冬季西伯利亚高压和东亚冬季风减弱(增强)以及亚洲大陆北部气温显著偏高(低)。冬季西伯利亚高压范围异常变化对北大西洋涛动没有显著的影响,其对北半球海平面气压、850 hPa温度的影响也明显要弱于北大西洋涛动的影响。  相似文献   

19.
刘莉  张文君  刘超 《气象学报》2023,81(1):137-151
基于哈得来中心(Hadley Centre)逐月的海表温度、海冰密集度资料以及美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)的大气环流再分析资料,分析了1950—2020年秋季(8—10月)东西伯利亚—波弗特海(East Siberian-Beaufort,EsCB)海冰年代际变化的时空特征,并阐述了大西洋多年代际振荡(Atlantic Multidecadal Oscillation,AMO)对EsCB海冰年代际变率的可能调制作用。结果表明,EsCB是秋季北极海冰年代际变化最主要的区域,该区海冰密集度年代际变率可占其异常总方差的40%以上。进一步研究发现,AMO对秋季EsCB海冰存在明显的调制作用,在AMO正位相,北大西洋正海温异常激发向极传播的大气罗斯贝波列,有利于北极中部出现高压异常,相应的大气绝热下沉运动使得对流层低层出现明显的升温,从而有利于EsCB海冰的融化。与此同时,地表升温和EsCB海冰消融会引起局地云量的增多、大气向下长波辐射增大,这反过来又使得地表气温升高,这种地表气温-云-长波辐射的正反馈过程有利于年代际海冰信号的长时间维持。耦合模式的北大西洋“起搏...  相似文献   

20.
Nonlinear projections of the Arctic Oscillation (AO) index onto North American winter (December–March) 500-mb geopotential height (Z500) and surface air temperature (SAT) anomalies reveal a pronounced asymmetry in the atmospheric patterns associated with positive and negative phases of the AO. In a linear view, the Z500 anomaly field associated with positive AO resembles a positive North Atlantic Oscillation pattern with statistically significant positive and negative anomalies stretching zonally into central-eastern USA and Canada, respectively, resulting in a cold climate anomaly over northeastern and eastern Canada, Alaska and the west coast of USA, and a warm climate anomaly over the rest of the continent. By contrast, the nonlinear behavior, mainly a quadratic association with AO, which is most apparent when the amplitude of the AO index is large, has the same spatial pattern and sign for both positive and negative values of the index. The nonlinear pattern reveals negative Z500 anomalies over the west coast of USA and the North Atlantic and positive Z500 anomalies at higher latitudes centered over the Gulf of Alaska and northeastern Canada accompanied by cooler than normal climate over the USA and southwestern Canada and warmer than normal climate over other regions of the continent. A similar analysis is conducted on the data from the Canadian Center for Climate Modelling and Analysis second generation coupled general circulation model. The nonlinear patterns of North American Z500 and SAT anomalies associated with the AO in the model simulation are generally consistent with the observational results, thereby confirming the robustness of the nonlinear behavior of North American winter climate with respect to the AO in a climate simulation that is completely independent of the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号