首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
黔东南石英脉型金矿毒砂Re-Os同位素定年及其地质意义   总被引:4,自引:0,他引:4  
黔东南石英脉型金矿床是雪峰多金属成矿带的重要组成部分,有较好的找矿前景,但对该区成矿理论的认识,特别是在成矿物质来源、成矿时代以及成矿动力学背景的认识上仍存在很大分歧.本次研究分别对该区两个主要金矿床(平秋、金井)的载金矿物——毒砂进行了Re-Os同位素定年研究.测试结果表明,平秋金矿蚀变岩型毒砂等时线年龄为400±2...  相似文献   

2.
The Tudun deposit is a medium-sized Cu–Ni sulfide deposit, located at the westernmost edge of the Huangshan–Jing’erquan Belt in the northern part of Eastern Tianshan, NW China. Sulfide separates including pentlandite, pyrrhotite and chalcopyrite from the Tudun deposit, contain Re, common Os and 187Os ranging from 40.46 to 201.2, 0.8048 to 6.246 and 0.1709 to 0.9977 ppb, respectively. They have very low 187Os/188Os ratios of 1.224–2.352. The sulfides yield a Re–Os isochron age of 270.0 ± 7.5 Ma (MSWD = 1.3), consistent within uncertainty with the SHRIMP zircon U–Pb age for the Tudun mafic intrusion (gabbro) of 280.0 ± 3.0 Ma. The calculated initial 187Os/188Os ratio is 0.533 ± 0.022, and γOs values range from 283 to 307, with a mean of 297, indicating significant crustal contamination of the parent melt prior to sulfide saturation. The Tudun deposit shares the same age and Re–Os isotopic compositions with other orthomagmatic Cu–Ni sulfide deposits in Huangshan–Jing’erquan Belt, suggesting that they have formed in Early Permian.  相似文献   

3.
The Dachang tin-polymetallic district, Guangxi, China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite (91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite. The ore minerals mainly consist of sphalerite, arsenopyrite, pyrrhotite, galena, chalcopyrite, and minor molybdenite. However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma (MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district’s biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions (206Pb/204Pb = 18.417–18.594, 207Pb/204Pb = 15.641–15.746, and 208Pb/204Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.  相似文献   

4.
Rhenium and osmium isotopes in sulfide minerals from the Bagdad porphyry Cu–Mo deposit have been used to determine timing of mineralization and the source of osmium and, by inference, ore metals. Molybdenite, chalcopyrite and pyrite were analyzed mainly from the quartz monzonite and porphyritic quartz monzonite units, which are characterized by moderate to strong potassic alteration (secondary biotite and K-feldspar). Rhenium concentrations in molybdenite are between 330 and 642 ppm. Four Re–Os analyses of two molybdenite samples from the quartz monzonite and porphyritic quartz monzonite yield a weighted average age of 71.8±0.2 Ma (2s). Analyses of a third sample from a molybdenite vein in Precambrian rocks, outside of the main ore zone, yield a weighted average age of 75.9±0.2 Ma (2s), and provide evidence of two separate mineralization episodes. Chalcopyrite samples contain 6 to 12 ppt Os and 1.7 to 4.1 ppb Re; 187Os/ 188Os initial ratios are between 0.1 and 0.8. Pyrite samples have osmium and rhenium concentrations varying in the range 8–17 ppt and 3.9–6.8 ppb, respectively. Analyses from these pyrite samples yield an eight-point isochron with an age of 77±15 Ma (2s) and an initial 187Os/ 188Os ratio of 2.1±0.8 (MSWD=0.90). The results presented here add to the growing body of work indicating that porphyry-type mineralization is produced by long-term, multiple episodes of magmatism and associated mineralization. The data also support the hypothesis that a significant part of the metals and magmas may have a crustal source, as has been suggested for other copper deposits and districts in Arizona.  相似文献   

5.
《International Geology Review》2012,54(14):1783-1791
The Chibaisong magmatic Cu–Ni sulphide deposit is located in Tonghua City, Jilin Province, in the eastern part of the northern margin of the North China Craton. The geological characteristics of the deposit have been investigated, and pyrrhotite Re–Os isotope dating has been utilized to constrain the age. Five pyrrhotite samples separated from the Chibaisong Cu–Ni sulphide deposit yielded a Re–Os isotopic isochron age of 2237 ± 62 Ma (mean squared weighted deviation = 1.13, n = 5), indicating that the only Palaeoproterozoic magmatic Cu–Ni sulphide deposit in China is the Chibaisong Cu–Ni sulphide deposit. The geodynamic setting during ore formation was related to the Liaoning–Jilin Palaeoproterozoic rift split. The Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.778 ± 0.033, and (187Os/188Os)i and γOs(t) values ranged from 0.7531 to 0.8013 (average 0.7734) and from 574 to 617 (average 592), respectively, indicating that abundant crustal material (5–10%) was mixed with the Cu–Ni sulphide ore system during magma ascent and ore formation.  相似文献   

6.
The black shale series that formed in the Ediacaran–Cambrian transition are important stratigraphic records of the co-evolution of the paleo-ocean, -climate, and -biology. In this study, we measured Re–Os isotopic compositions of the black shale in the Niutitang Formation from the Gezhongwu section in Zhijin, Guizhou Province. The samples had high Re and Os contents, with Re ranging from 21.27 to 312.78 ng/g and Os ranging from 0.455 to 7.789 ng/g. The Re–Os isotope isochron age of 522.9 ± 8.6 Ma implies deposition of the Niutitang black shale predated the Chengjiang Fauna, providing an age constraint for the expansion of oceanic anoxia in the study area. The initial 187Os/188Os ratio of 0.826 ± 0.026 indicates that enhanced continental weathering might have triggered the expansion of the oceanic anoxia.  相似文献   

7.
羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年   总被引:7,自引:0,他引:7  
地球化学资料表明,羌塘盆地胜利河海相油页岩有机碳含量为15.05%~20.34%,平均为17.695%,灰分含量为55.23%,焦油含量为11.0%;干酪根类型为Ⅱ1或Ⅱ2型。利用Re-Os同位素对该油页岩层进行定年,得到的等时线年龄为101±24Ma。该等时线年龄比生物地层所获得的地层年龄年轻。  相似文献   

8.
Seven 187Re-187Os ages were determined for molybdenite and pyrite samples from two well-dated Precambrian intrusions in Fennoscandia to examine the sustainability of the Re-Os chronometer in a metamorphic and metasomatic setting. Using a new 187Re decay constant (1.666 × 10−11y−1) with a much improved uncertainty (±0.31%), we determined replicate Re-Os ages for molybdenite and pyrite from the Kuittila and Kivisuo prospects in easternmost Finland and for molybdenite from the Kabeliai prospect in southernmost Lithuania. These two localities contain some of the oldest and youngest plutonic activity in Fennoscandia and are associated with newly discovered economic Au mineralization (Ilomantsi, Finland) and a Cu-Mo prospect (Kabeliai, Lithuania). Two Re-Os ages for vein-hosted Kabeliai molybdenite average 1486 ± 5 Ma, in excellent agreement with a 1505 ± 11 Ma U-Pb zircon age for the hosting Kabeliai granite pluton. The slightly younger age suggests the introduction of Cu-Mo mineralization by a later phase of the Kabeliai magmatic system. Mean Re-Os ages of 2778 ± 8 Ma and 2781 ± 8 Ma for Kuittila and Kivisuo molybdenites, respectively, are in reasonable agreement with a 2753 ± 5 Ma weighted mean U-Pb zircon age for hosting Kuittila tonalite. These Re-Os ages agree well with less precise ages of 2789 ± 290 Ma for a Rb-Sr whole-rock isochron and 2771 ± 75 Ma for the average of six Sm-Nd TDM model ages for Kuittila tonalite. Three Re-Os analyses of a single pyrite mineral separate, from the same sample of Kuittila pluton that yielded a molybdenite separate, provide individual model ages of 2710 ± 27, 2777 ± 28, and 2830 ± 28 Ma (Re = 17.4, 12.1, and 8.4 ppb, respectively), with a mean value of 2770 ± 120 Ma in agreement with the Kuittila molybdenite age. The Re and 187Os abundances in these three pyrite splits are highly correlated (r = 0.9994), and provide a 187Re-187Os isochron age of 2607 ± 47 Ma with an intercept of 21 ppt 187Os (MSWD = 1.1). It appears that the Re-Os isotopic system in pyrite has been reset on the millimeter scale and that the 21 ppt 187Os intercept reflects the in situ decay of 187Re during the ∼160 to 170 m.y. interval from ∼2778 Ma (time of molybdenite ± pyrite deposition) to ∼2607 Ma (time of pyrite resetting). When the Re-Os data for molybdenites from the nearby Kivisuo prospect are plotted together with the Kuittila molybdenite and pyrite data, a well-constrained five-point isochron with an age of 2780 ± 8 Ma and a 187Os intercept (−2.4 ± 3.8 ppt) of essentially zero results (MSWD = 1.5). We suggest that the pyrite isochron age records a regional metamorphic and/or hydrothermal event, possibly the time of Au mineralization. A proposed Re-Os age of ∼2607 Ma for Au mineralization is in good agreement with radiometric ages by other methods that address the timing of Archean Au mineralization in deposits worldwide (so-called “late Au model”). Molybdenite, in contrast, provides a robust Re-Os chronometer, retaining its original formation age of ∼2780 Ma, despite subsequent metamorphic disturbances in Archean and Proterozoic time. Received: 25 September 1996 / Accepted: 27 August 1997  相似文献   

9.
The absolute timing of epigenetic mineralization, including most types of gold deposits, is difficult to resolve due to the absence of suitable minerals in veins and replacement zones. However, gold is commonly closely associated with pyrite and arsenopyrite, which may be amenable to Re–Os geochronology, providing sufficient Re and Os are present within them. This short paper outlines the use of this method to date two gold deposits in Newfoundland using pyrite. Although the Os contents of the pyrites are extremely low (≪0.1 ppb), the Os is almost exclusively radiogenic 187Os, and data are amenable to model age calculations, as used in Re–Os molybdenite dating. The pyrites from these deposits correspond to low-level highly radiogenic sulphides, as defined by other studies. The Stog’er Tight and Pine Cove gold deposits yield mean Re–Os model ages of 411 ± 7 Ma (n = 4) and 420 ± 7 Ma (n = 5), respectively, which agree with isochron regression of 187Os against 187Re. The Re–Os age for Stog’er Tight is within uncertainty of a previous U–Pb age from ‘hydrothermal’ zircon (420 ± 5 Ma) in spatially related alteration. A latest Silurian–earliest Devonian age for the mineralization is consistent with indirect age constraints from some other gold deposits in central Newfoundland and suggests a broad temporal link to the mid-Silurian Salinic Orogeny. However, the gold mineralization appears to be younger than most plutonic activity associated with this event. The results illustrate the potential value of Re–Os pyrite geochronology in understanding the temporal framework of epigenetic mineralization, especially if future improvements in analytical precision and reductions in procedural blanks allow wider application to material with similarly low Re and Os concentrations.  相似文献   

10.
This study firstly presents chemical and initial Os-isotopic compositions of Os-Ir-Ru minerals of two ultramafic formations of Polar Siberia, which are exemplified by Guli clinopyroxene-dunite massif of the Maimecha-Kotui Province and the Kunar dunite-harzburgite massif from the Chelyuskin ultramafic belt of the Taimyr Peninsula. The study employed a range of methods, including electron microprobe analysis, negative thermal ionization mass spectrometry (N-TIMS) and laser ablation attached to an inductively coupled plasma mass spectrometry (LA MC-ICP-MS). The majority of platinum-group minerals (PGM) from the Guli massif are Os-(Ir-Ru) solid solutions or Os-rich minerals. At Kunar, minerals of Ru-Os-Ir system (i.e., osmium, ruthenium, iridium and rutheniridosmine) dominate the PGM assemblage. The ruthenium trend in the mineral compositions is due to the formation of these minerals under high pressures and temperatures at considerable depths. The 187Os/188Os values of Os-rich minerals from the Guli massif range from 0.12309 ± 0.00002 to 0.12606 ± 0.00003 (n = 168). The initial Os-isotopic composition of PGM from the central block of the Guli massif is characterized by the 187Os/188Os values, varying in the range 0.12404–0.12606. Osmiumrich minerals from the southwestern block of the Guli massif are characterized by the least “radiogenic” 187Os/188Os values (i.e., 0.12309–0.12341). Low relative to the chondritic universal reservoir (CHUR) 187Os/188Os values are indicative of a near-to-chondritic source of platinum-group elements (PGE). The most “productive” stage of PGM formation at Guli (n = 121) is recorded in the time interval of 545–615 Ma. The older model 187Os/188Os ages of osmium minerals are characteristic of the southwestern block of the Guli massif (e.g., 745–760 Ma). The results of the initial Os-isotopic composition for Os-rich alloys are consistent with a model, in which PGM were formed during multi-stage melt depletion events in the mantle. This agrees well with the suggestion that the Guli massif consists of heterogeneous blocks of ultramafic rocks. The 187Os/188Os ratio in the investigated PGM from the Kunar massif varies in a wider range (0.1094–0.1241, n = 28). For the dominant set of PGM samples (n = 25), regardless of their chemical composition, four groups of the initial osmium isotopic compositions can be estimated, with average 187Os/188Os values of 0.1217 ± 0.0002 (n = 7), 0.1223 ± 0.0002 (n = 7), 0.1230 ± 0.0002 (n = 6) and 0.1238 ± 0.0003 (n = 6), respectively. The average model Re-Os ages for the defined groups of the Kunar massif are consistent with Late Riphean age interval (e.g., 975 ± 42 Ma, 892 ± 42 Ma, 791 ± 28 Ma and 681 ± 42 Ma, respectively). Significant variations in the 187Os/188Os values and model ages for Ru-Os-Ir alloys at Kunar are close to those from other duniteharzburgite massifs of the Earth, pointing out for their prolonged multi-stage evolution within the upper mantle.  相似文献   

11.
The Homestake gold deposit, located in the Black Hills, South Dakota, USA, is one of the largest known hydrothermal gold deposits globally, with total mining production exceeding 40 Moz Au. Rhenium–osmium geochronology of ore-associated arsenopyrite and pyrrhotite was performed in an effort to delineate the timing of gold mineralization in relation to known tectonothermal events in the northern Black Hills. Arsenopyrite yields a rhenium–osmium (Re–Os) age of 1,736 ± 8 Ma (mean squared weighted deviation = 1.6), consistent with existing age constraints for gold mineralization, whereas Re–Os pyrrhotite data are highly scattered and do not yield a meaningful mineralization age. This is taken to indicate that the Re–Os arsenopyrite chronometer is robust to at least 400°C, whereas the Re–Os pyrrhotite chronometer is likely disturbed by temperatures of 300–350°C. The Re–Os arsenopyrite age and initial Os ratio (0.28 ± 0.15) are interpreted to indicate that gold was introduced at ca. 1,730 Ma, coincident with the onset of exhumation of crustal blocks and, possibly, the earliest intrusive phases of Harney Peak granite magmatism. New in situ U–Pb monazite analyses from an aplite dike in the east-central Black Hills indicate that granite magmatism was a protracted event, persisting until at least ca. 1,690 Ma.  相似文献   

12.
《International Geology Review》2012,54(11):1357-1376
The Jiazishan porphyry-type molybdenum deposit is located in the eastern Inner Mongolia Autonomous Region in China. Mineralization occurs mainly as veins, lenses, and layers within the host porphyry. To better understand the link between mineralization and host igneous rocks, we studied samples from underground workings and report new SHRIMP II zircon U–Pb and Re–Os molybdenite ages, and geochemical data from both the molybdenites and the porphyry granites. Seven molybdenite samples yield a Re–Os isochron weighted mean age of 135.4 ± 2.1 Ma, whereas the porphyry granite samples yield crystallization ages of 139 ± 1.5 Ma (Jiazishan deposit) and 133 ± 1 Ma (Taolaituo deposit). The U–Pb and Re–Os ages are similar, suggesting that the mineralization is genetically related to Early Cretaceous porphyry emplacement. Re contents of the molybdenite range from 21.74 ppm to 52.08 ppm, with an average of 35.92 ppm, whereas δ34 S values of the sulphide vary from 1.3‰ to 4.2‰. The ores have 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.178–18.385, 15.503–15.613, and 37.979–38.382, respectively. We also obtained a weighted mean U–Pb zircon age of 294.2 ± 2.1 Ma for the oldest granite in Jiazishan area. All granites are A-type granites. These observations indicate that the molybdenites and the porphyry granites were derived from a mixed source involving young accretionary materials and enriched subcontinental lithospheric mantle. A synthesis of geochronological and geological data reveals that porphyry emplacement and Mo mineralization in the Jiazishan deposit occurred contemporaneously with Early Cretaceous tectonothermal events associated with lithospheric thinning, which was caused by delamination and subsequent upwelling of the asthenosphere associated with intra-continental extension in Northeast China.  相似文献   

13.
We report the first study of the Re-Os systematics of cobaltite (CoAsS) using disseminated grains and massive sulfides from samples of two breccia-type and two stratabound deposits in the Co-Cu-Au Idaho cobalt belt (ICB), Lemhi subbasin to the Belt-Purcell Basin, Idaho, USA. Using a 185Re + 190Os spike solution, magnetic and non-magnetic fractions of cobaltite mineral separates give reproducible Re-Os analytical data for aliquot sizes of 150 to 200 mg. Cobaltite from the ICB has highly radiogenic 187Os/188Os ratios (17–45) and high 187Re/188Os ratios (600–1800) but low Re and total Os contents (ca. 0.4–4 ppb and 14–64 ppt, respectively). Containing 30 to 74% radiogenic 187Os, cobaltite from the ICB is amenable to Re-Os age determination using the isochron regression approach.Re-Os data for disseminated cobaltite mineralization in a quartz-tourmaline breccia from the Haynes-Stellite deposit yield a Model 1 isochron age of 1349 ± 76 Ma (2σ, n = 4, mean squared weighted deviation MSWD = 2.1, initial 187Os/188Os ratio = 4.7 ± 2.2). This middle Mesoproterozoic age is preserved despite a possible metamorphic overprint or a pulse of metamorphic-hydrothermal remobilization of pre-existing cobaltite that formed along fold cleavages during the ca. 1190–1006 Ma Grenvillian orogeny. This phase of remobilization is tentatively identified by a Model 3 isochron age of 1132 ± 240 Ma (2σ, n = 7, MSWD = 9.3, initial 187Os/188Os ratio of 9.0 ± 2.9) for cobaltite in the quartz-tourmaline breccia from the Idaho zone in the Blackbird mine.All Mesoproterozoic cobaltite mineralization in the district was affected by greenschist- to lower amphibolite-facies (garnet zone) metamorphism during the Late Jurassic to Late Cretaceous Cordilleran orogeny. However, the fine- to coarse-grained massive cobaltite mineralization from the shear zone-hosted Chicago zone, Blackbird mine, is the only studied deposit that has severely disturbed Re-Os systematics with evidence for a linear trend of mixing with (metamorphic?) fluids.The new Re-Os ages and extremely high initial 187Os/188Os ratios of cobaltite reported here favor a magmatic-hydrothermal genetic model for a multi-stage REE-Y-Co-Cu-Au mineralization occurring at ca. 1370 to 1349 Ma, and related to the emplacement of the Big Deer Creek granite pluton at ca. 1377 Ma. In our model, deposition of paragenetically early xenotime and gadolinite was followed by an influx of Mesoproterozoic evaporitic brines and magmatic-hydrothermal fluids containing metals and reduced sulfur derived from mafic and oceanic island-arc Archean to Paleoproterozoic rocks in the Laurentian basement. Cobaltite mineralization occurred upon cooling of these fluids at an inferred temperature of 300 °C or below.  相似文献   

14.
The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ~(187)Os/~(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ~(187)Os/~(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ~(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10~(-4) Ra to 2.5 × 10~(-2) Ra(Ra = 1.4 × 10~(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10~(-2) to 15.39×10~(-2), and ~(40)Ar/~(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.  相似文献   

15.
New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8?±?0.1 Ma and 13.4?±?0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2?±?0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65?±?0.03 Ma and 5.35?±?0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5–2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70?±?0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36?±?0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.  相似文献   

16.
A Re–Os isochron age is reported for massive sulfides from near the basal contact of the Radio Hill layered mafic‐ultramafic intrusion in the west Pilbara Craton, Western Australia. The isochron age is 2892 ± 34 Ma (mean square of weighted deviates = 1.06) with an initial 187Os/188Os = 0.1265 ± 0.0028. This age is in agreement with the ages of other nearby layered mafic intrusions that are considered to have a similar geological evolution to the Radio Hill Intrusion.  相似文献   

17.
The Xinlu Sn‐polymetallic ore field is located in the western Nanling Polymetallic Belt in northeastern Guangxi, South China, where a number of typical skarn‐, hydrothermal vein‐type tin deposits have developed. There are two types of Sn deposits: skarn‐type and sulfide‐quartz vein‐type. The tin mineralizations mainly occur on the south side of the Guposhan granitic complex pluton and within its outer contact zone. To constrain the Sn mineralization age and further understand its genetic links to the Guposhan granitic complex, a series of geochronological works has been conducted at the Liuheao deposit of the ore field using high‐precision zircon SHRIMP U‐Pb, molybdenite Re‐Os, and muscovite Ar‐Ar dating methods. The results show that the biotite‐monzogranite, which is part of the Xinlu intrusive unit of the Guposhan complex pluton, has a SHRIMP U‐Pb zircon age of 161.0 ± 1.5 Ma. The skarn‐type ore has a 40Ar‐39Ar muscovite plateau age of 160 ± 2 Ma (same as its isochron age), and the sulfide‐quartz vein‐type ore yields an Re‐Os molybdenite isochron age of 154.4 ± 3.5 Ma. The magmatic‐hydrothermal geochronological sequence demonstrated that the hydrothermal mineralization took place immediately following the emplacement of the monzogranite, with the skarn metasomatic mineralization stage predating the sulfide mineralization stage. Geochronologically, we have compared this ore field with 26 typical Sn deposits distributed along the Nanling Polymetallic Belt, leading to the suggestion of the magmatic‐metallogenic processes in the Xinlu ore field (ca. 161–154 Ma) as a component of the Early Yanshanian large‐scale Sn‐polymetallic mineralization event (peaked at 160–150 Ma) in the Nanling Range of South China. Petrogenesis of Sn‐producing granite and Sn‐polymetallic mineralization were probably caused by crust–mantle interaction as a result of significant lithospheric extension and thinning in South China in the Late Jurassic.  相似文献   

18.
Re-Os isotopes were used to constrain the source of the ore-forming elements of the Tharsis and Rio Tinto mines of the Iberian Pyrite Belt, and the timing of mineralization. The pyrite from both mines has simila]r Os and Re concentrations, ranging between 0.05–0.7 and 0.6–66 ppb, respectively. 187Re/188Os ratios range from about 14 to 5161. Pyrite-rich ore samples from the massive ore of Tharsis and two samples of stockwork ore from Rio Tinto yield an isochron with an age of 346 ± 26 Ma, and an initial 187Os/188Os ratio of about 0.69. Five samples from Tharsis yield an age of 353 ± 44 Ma with an initial 187Os/188Os ratio of about 0.37. A sample of massive sulfide ore from Tharsis and one from Rio Tinto lie well above both isochrons and could represent Re mobilization after mineralization. The pyrite Re-Os ages agree with the paleontological age of 350 Ma of the black shales in which the ores are disseminated. Our data do not permit us to determine whether the Re-Os isochron yields the original age of ore deposition or the age of the Hercynian metamorphism that affected the ores. However, the reasonable Re-Os age reported here indicates that the complex history of the ores that occurred after the severe metamorphic event that affected the Iberian Pyrite Belt massive sulfide deposits did not fundamentally disturb the Re-Os geochronologic system. The highly radiogenic initial Os isotopic ratio agrees with previous Pb isotopic studies. If the initial ratio is recording the initial and not the metamorphic conditions, then the data indicate that the source of the metals was largely crustal. The continental margin sediments that underlie the deposits (phyllite-quartzite group) or the volcanic rocks (volcanogenic-sedimentary complex) in which the ores occur are plausible sources for the ore-forming metals and should constrain the models for the genesis of these deposits. Received: 15 March 1999 / Accepted: 26 July 1999  相似文献   

19.
Rhenium–osmium ages were determined for two molybdenite samples and a Pb–Pb age was derived from bornite–chalcopyrite–magnetite at the Salobo iron oxide copper–gold deposit to determine the timing of mineralization and its relation to the nearby Old Salobo Granite. Rhenium–osmium dating of molybdenite spatially associated with copper sulfide minerals yields ages with weighted means of 2576±8 and 2562±8 Ma. Removing the error multiplier introduced by the decay constant uncertainty, appropriate for comparing ages from the same isotopic system, these data convincingly argue for two temporally separated pulses of molybdenite deposition at 2576.1±1.4 Ma (n=2) and 2561.7±3.1 Ma (n=3). The 2576±8 Ma age coincides with a previously published U–Pb age of 2573±2 Ma for the Old Salobo Granite, suggesting that main stage ore formation may have been contemporaneous with granite magmatism. The slightly younger 2562 Ma age most likely represents new molybdenite precipitation associated with the development or reactivation of local shear zones. Lead–lead stepwise leaching of copper sulfide minerals yields a less precise isochron age of 2579±71 Ma, and supports an Archean age for the Salobo ores. This is the first documentation of an Archean iron oxide copper–gold deposit, and the Re–Os and Pb–Pb geochronology herein support 2580–2550 Ma estimates for basement reactivation and regional granite magmatism associated with the development of brittle–ductile shear zones.  相似文献   

20.
As China's most important gold-producing district,the Jiaodong Peninsula also contains copper,lead-zinc,molybdenum(tungsten),and other nonferrous metal ore deposits,but the space-time and genetic relationships with gold deposits remain uncertain.To investigate the temporal relationship between these nonferrous metal and gold ore deposits,We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating.The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5± 1.8 Ma to 112.6± 1.5 Ma,with an average age of 113.6± 1.6Ma;the LA-ICP-MS ~(206)Pb/~(238)U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma,with a weighted mean age of 116.04± 0.95 Ma;the LA-ICP-MS ~(206)Pb/~(238)U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from126 Ma to 106 Ma,with a weighted mean age of 116.6± 1.7 Ma;and the LA-ICP-MS ~(206)Pb/~(238)U ages of19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma,with a weighted mean age of 111.7± 0.6 Ma.All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma.Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma,while Weideshanian magmatism occurred between 126 Ma to 108 Ma.Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study,suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong.This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time.In addition,field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite,with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton.We propose the following mineralization scenario:In the Early Cretaceous,an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle,which resulted in the formation of mantle-derived fluids enriched in metal elements.During the rapid process of magma ascent and intrusion,crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust.These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid.The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type,skarn-type,and hydrothermal-vein-type ores,thus forming a series of Mo(W),Cu,and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula.In contrast,the medium-to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold(silver) ores under the appropriate physiochemical and structural conditions.The metallogenic epoch of the molybdenum,copper,and silver deposits,and their spatio-temporal and genetic relations to the gold deposits,as demonstrated in this study,not only provide important insights to the study of regional metallogeny,our understanding of the metallogenesis of the Jiaodong type gold deposit,and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula,but also have practical value in guiding the mineral exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号