首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
本文首先讨论了中层和热层大气湍流谱区的划分,发现对于同样尺度的湍流,在不同高度对应的谱区是不同的。随着高度的增加,愈向耗散区一端移动。其次,从理论上讨论和计算了不同高度的湍谱分布。最后,导出了湍流扩散系数的公式。湍流扩散对于高层大气成份的垂直分布有很大的影响。观测结果表明,并不是所有尺度的湍流对高层大气成份的垂直分布都发生影响,而是具有某一尺度的小尺度湍流起主要作用。我们引出了一个有效湍流尺度的概念,并从理论上计算了湍流扩散系数随高度的分布。结果与观测的氩和氦随高度的分布反推出来的湍流扩散系数相符合,同时也与ALADDN 1试验测量的结果相符合。  相似文献   

2.
磁场重联中的电子加速机制的数值模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在应用2.5维混合模拟方法研究Petschek模型磁场重联的基础上,考察了试验电子被加速的特征. 模拟结果表明,稳态的低频重联场能将少量试验电子加速到高能,电子的能谱为幂律谱,但总体分布函数未发生显著变化. 电子在整个加速过程中被束缚在低磁场的加速区内,由重联产生的感应电场Ey分量对其直接加速,根据加速时间和加速区域可以将这些电子分为两种情况:初始位于加速区和漂移到加速区被加速.  相似文献   

3.
本文利用试验粒子方法研究了在考虑等离子体湍动的情况下带电粒子在准垂直激波中的加速, 在计算中, 我们采用组合模型来拟合等离子体湍动. 计算结果表明, 在存在等离子体湍动的情况下, 粒子可横越背景磁场运动, 从而被激波反射的上游粒子在到达下游后可被等离子体湍动散射回到上游, 并再次被激波反射并加速, 这样的过程可重复很多次, 因而粒子可被加速到很高的能量. 我们还研究了激波角, 粒子的初始能量和等离子体湍动的强度, 以及相干长度和两种湍动组分强度比与加速粒子的能谱之间的关系.  相似文献   

4.
本文主要讨论在导致赤道夜间扩展F回波的上升汽泡中,短波区(λ25m)等离子体密度谱分布的物理机制,说明不均匀体内不同的湍动水平将产生不同的谱结构。对于较低湍动水平的汽泡,由于纵向离子声波和具有有限平行波矢漂移波的耦合共振相互作用,导致波模间能量的有效传输,从而控制湍动水平的发展,形成等能多峰谱结构。另一方面,对于湍动充分发展的汽泡,由长波区大幅度扰动维持的短波区强漂移湍动态,在KrLi≈2处形成一较宽的极大谱峰,然后谱以K-2.6的形式减小。理论分析和探测结果符合甚好。  相似文献   

5.
本文在等离子体准线性理论下研究了地球同步轨道附近哨声湍流对亚暴“种子电子”的波-电子共振相互作用. 当发生这种共振时,“种子电子”的动量分布函数经动量扩散而随时间演化,部分低能电子数减少了,而高能尾部分的相对论电子(能量大于1MeV)数增加了,说明“种子电子”得到了哨声湍流的有效加速,且哨声湍流的能量越高,其加速效率越高. 另外,哨声湍流的频率越低(或波数越小),共振电子的能量越高(或单位质量的动量越大);频率范围越宽,共振电子的能量范围越宽,被加速的电子数也越多. 磁层哨声湍流加速“种子电子” 大约在30h内就可以造成相对论电子数显著增加,这正好和大多数磁暴期间观测到的相对论电子通量的增长时间相当.  相似文献   

6.
利用2001年3月19~29日和2003年8月11~25日中国科学院大气物理研究所325m大气边界层观测塔资料,分析研讨了北京城市大气边界层低层的垂直动力结构特征及其与污染物浓度分布的关系.对比分析了北京城市大气边界层低层不同高度的风、温度和湿度梯度资料、大气湍流和大气化学观测系统资料,综合分析获取了无因次速度、温度湍流方差和湍流通量、湍能分布特征及其与污染物浓度空间分布的关系,同时分析了北京地区沙尘天气过程中城市边界层低层垂直结构特征及其污染物浓度的分布与变化特征.分析结果表明,在不稳定层结条件下,47和120m高度上无因次速度湍流方差和温度湍流方差遵循莫宁-奥布克霍夫相似规律,并给出相应的拟合公式.稳定大气边界层可按层结参数z′/L分成二分区,z′/L<0.1为弱稳定区,此时相似规律可适用,z′/L>0.1为强稳定区,在此区内无因次速度方差随稳定度增大有增大的趋势,而无因次温度方差则保持不变.白天近地层包含了47和120m,而280m已在近地层之上.对2001年3月北京地区一次沙尘天气过程的城市边界层资料分析发现,320m高度上总悬浮颗粒物浓度最高达到913.3μg/m3,在边界层内大气颗粒物从上层向低层输送,这与锋面过境时低空急流从上层向下发展过程并伴随的强下沉运动有关.  相似文献   

7.
提出了一个太阳脉冲和经变耀斑中高能太阳宇宙线电子能谱的形成模型,探讨了高能电子通过日冕捕获区的库仑损失、轫致辐射和同步辐射等物理过程,首次研究了日冕等离子体尾场对太阳宇宙线电子的加速及其能谱的形成.所得结果和观测谱能很好地符合,从而较合理地阐明了脉冲耀斑和经变耀斑两类太阳宇宙线高能电子谱的结构.  相似文献   

8.
研究了中高度(离地心3-4个地球半径)极隙区上行电子束流和上行氧离子(o)锥引起的沿磁力线传播的电磁不稳定性.采用的物理模型假定:上行电子具有单能束流分布函数,而上行氧离子(o)锥可用单能环-束分布函数来描述.结果表明,左旋和右旋圆偏振的低频电磁模是不稳定的,激发不稳定性的自由能源主要由上行电子束流提供,而上行氧离子(o)锥因自由能太小只影响频率色散关系,上行粒子(电子和氧离子)与背景等离子体密度比的变化对电磁不稳定性有重要影响.这些结果对解释权隙区纬度地面站低频电磁波观测资料和理解极隙区动力学过程是很有益的.  相似文献   

9.
森林冠层上下湍流谱结构和耗散率   总被引:3,自引:1,他引:2  
利用新型三维超声风速 /温度仪 ,根据在长白山原始森林冠层上下两个高度上测量的湍流资料 ,采用涡动相关法计算和分析了森林冠层上下湍流谱的结构、局地各向同性和耗散率 .结果表明 ,在惯性副区 ,归一化湍流谱遵从 - 23的指数规律 ;在森林冠层上 ,尽管谱的形状与均匀表面的一致 ,但是 ,大气湍流是非各向同性的 ;而在森林冠层内则是近似各向同性的 ;森林冠层上下湍流能量和热量耗散率比典型草原和牧场的结果大 ,揭示了森林粗糙表面在湍流输送过程中的动力扰动和对大涡的破碎作用  相似文献   

10.
韩磊  袁业立 《中国科学D辑》2007,37(9):1273-1279
借助相似性定理推导出波浪破碎形成的气泡总数与气体体积卷入率、湍流能谱密度以及表面张力之间的关系, 得出泡径谱的指数为-2.5+nd, 其中nd取决于湍流能谱在黏性耗散区的分布. 利用引入的两个破碎统计量, 进一步导出了破碎过程中的气体体积卷入率Q的表达式, 建立了泡径谱与波浪要素的联系. 在此基础上, 利用观测结果提出两点假设, 并据此将泡径谱N(a)推广为随泡径和深度的分布函数N(a, z).  相似文献   

11.
The sensitive method for detecting and measuring the velocity of a weak luminosity wave, traveling from bottom to top along an arc or isolated auroral beams, has been developed. This wave is caused by dispersion of precipitating electrons over velocities and by a differential atmospheric penetration of different-energy electrons, and the wave velocity gives information about the location of the electron acceleration region in the magnetosphere. The method was tested using different model signals and was used to study pulsating auroras and auroral breakup. A luminosity wave has been detected in pulsating auroras, and it has been estimated that the injection region is located at a distance of 5–6 R e . The application of the method to intensification of auroras during breakup indicated that such a wave is absent; i.e., breakup electrons being accelerated near the ionosphere at altitudes of 2000–8000 km. It has been assumed that the regions of anomalous resistance, generated in the ionosphere by field-aligned currents during the breakup phase, cause intense local field-aligned electric fields. These fields accelerate thermal electrons and form the auroral breakup pattern.  相似文献   

12.
A kinetic theory is necessary to explain the electron flows forming strong field-aligned currents in the auroral region. Its construction in this paper is based on the following propositions. (a) In the equatorial region, the arrival of electrons through the lateral surface of the magnetic flux tube is compensated for by their escape along the magnetic field. This is provided by action of the pitch-angle diffusion mechanism in the presence of plasma turbulence concentrated in this region. (b) Outside the equatorial region, the distribution functions of trapped and precipitating particles become “frozen.” The distributions and particle concentrations are calculated there in a model with conservation of the total energy and the magnetic moment. (c) The quasi-neutrality condition yields a large-scale parallel electric field, which contributes to the conserved total energy. In this field, the electron acceleration occurs, causing strong field-aligned currents directed upward from the ionosphere.  相似文献   

13.
The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC) turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of δ V ≈ 1–10 kV at altitudes of 500 < h < 10 000 km above the Earth’s surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.  相似文献   

14.
There are recent observational indications (lack of convergent electric field signatures above the auroral oval at 4 RE altitude) that the U-shaped potential drop model for auroral acceleration is not applicable in all cases. There is nevertheless much observational evidence favouring the U-shaped model at low altitudes, i.e., in the acceleration region and below. To resolve the puzzle we propose that there is a negative O-shaped potential well which is maintained by plasma waves pushing the electrons into the loss cone and up an electron potential energy hill at 3/4RE altitude range. We present a test particle simulation which shows that when the wave energization is modelled by random parallel boosts, introducing an O-shaped potential increases the precipitating energy flux because the electrons can stay in the resonant velocity range for a longer time if a downward electric field decelerates the electrons at the same time when waves accelerate them in the parallel direction. The lower part of the O-shaped potential well is essentially the same as in the U-shaped model. The electron energization comes from plasma waves in this model, but the final low-altitude fluxes are produced by electrostatic acceleration. Thus, the transfer of energy from waves to particles takes places in an energization region, which is above the acceleration region. In the energization region the static electric field points downward while in the acceleration region it points upward. The model is compatible with the large body of low-altitude observations supporting the U-shaped model while explaining the new observations of the lack of electric field at high altitude.  相似文献   

15.
本文建议用电压干涉技术通过部分反射雷达来测量低电离层中的电子浓度不规则性及其扰动。电压干涉技术首先由Woodman提出用在Jicamarca的非相干散射雷达上,精确地确定一个高的局部散射区的位置。在单个散射体存在的情况下,这是一个简单而有效的技术。但当多个散射体同时存在时便产生了问题。Farlty等发展了一个谱干涉方法,可以有效地区分不同的散射体。后来此方法采用一对或3个天线成功地用在对流层、中层和电离层扰动的研究中。Rttger等也使用事后波束控制(Postsetqeam Steering)方法,广义上说这也是干涉方法,来确定大气扰动结构和一些参数。Adams等则更进一步提出了一个工作在中频2.66MHz的成像Doppler干涉方法,通过10个天线采用谱干涉和Doppler技术研究中层大气扰动的物理机制。  相似文献   

16.
In the ARAKS experiment, electron pulses were injected into the ionosphere from onboard a rocket. For different series of pulses, the initial energy of electrons was 27 and 15 keV and the current strength was ∼0.5 A. On board the rocket, the distributions of electron fluxes directed toward the rocket were measured using the retarding potential by the electron energy up to 3000 eV. In this work, it is shown that the appearance of extreme values of the intensity of electron fluxes higher than 200 eV at the tail of the electron energy distribution can be explained by the nonmonotonic acceleration of electrons in the fields of electrostatic turbulence. The dynamics of electron and ion fluxes can be influenced by the polarization drift. It should be noted that extreme values of the flux intensities were not observed at heights lower than 130 km. This can be connected with the suppression of electrostatic oscillations by collisions of electrons with ionospheric components.  相似文献   

17.
本文讨论了一种地球磁层的亚暴机制。当行星际磁场有大的南向分量时,磁层的位形可由基本闭式转变为开式。磁鞘中的阿尔文波可以携带超过10~(18)尔格/秒的能流传入磁层尾部,并将能量耗散于等离子体片中。等离子体片中的粒子被加热和加速后,注入近地空间,产生环电流和极区亚暴。计算了剪切流场中阿尔文波的传播过程,以及磁层中阿尔文波的耗散。将本文的结算与[4]中的结果合在一起,可以说明当行星际磁场转向南时,容易发生地球磁层亚暴,但这两者并非一一对应的关系,行星际磁场没有南向分量时也可以发生地球磁层亚暴。  相似文献   

18.
"嫦娥"一号、二号绕月飞行经历地球磁尾边界层区域时,分别在2007年11月26日—2008年2月5日和2010年10月3日—2011年2月28日,发现了15次月球轨道0.1~2 MeV电子急剧增加(Bursts of 0.1~2 MeV Energetic Electrons,BEE),卫星周围等离子体离子加速的现象.统计研究表明,这类现象发生在稳定太阳风和弱行星际磁场条件下,且无显著空间环境扰动事件发生时,离子的加速滞后于高能电子爆发,离子能量的变化与高能电子通量的时间演化正相关,地球磁鞘内侧或边界层过渡区域是该类现象的高发区,离子能量增加时卫星表面电位大幅下降可达负几千伏.为了研究高能电子爆发与绕月卫星表面电位变化的关系及其对月球表面电位的影响,本文用电流平衡法建立绕月卫星和月球表面充电模型,并假设能量电子(2eV~2 MeV)满足幂律谱的分布,模拟急剧增加的能量电子对卫星和月球表面电位的影响.模拟结果表明,能量电子急剧增加使得绕月卫星和月球表面电位大幅下降;能量电子总流量1011 cm-2时,绕月卫星和月球表面充电电位可达负上千伏;月球充电到大的负电位的时间仅为卫星充电时间的1/10.鉴于高能电子急剧增加事件的高发生率(~125次/年),能量电子急剧增加使得绕月卫星表面电位大幅下降的发生率应大于实测等离子体离子加速现象的发生率(~25次/年).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号